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Reader's Guide
Core Profile Documentation

These topics will provide an overview of the model without the burden of detail. Each can be read in about 5-
10 minutes. Each contains links to more detailed information if required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed information is available for
each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

Output Overview
Definitions and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Key References
A list of references used in the development of the model.
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Model Purpose
Summary
Kystis is a discrete event microsimulation model of bladder cancer in the U.S. population. It simulates
individuals who, depending on their demographic characteristics and exposure history, may develop bladder
lesions throughout their lives. The model simulates bladder cancer's natural history, including symptom
development and disease progression, clinical detection, treatment, and mortality. It was developed to assess
bladder cancer prevention, detection, and management strategies at both population and individual levels.

Purpose
Kystis was developed to analyze bladder cancer trends and evaluate the impact of interventions, such as
targeted screening, surveillance strategies for non-muscle invasive bladder cancer, and treatments for organ-
confined bladder cancer.

Kystis aims to address the following questions:

Impact of carcinogens on past bladder cancer outcomes. Smoking accounts for approximately 50%
of all bladder cancer cases in men and up to 30% in women.1-3Despite decreases in smoking and
various environmental exposure regulations, the incidence of bladder cancer has remained relatively
stable over the past five decades, unlike the declining trends seen in other smoking-related cancers,
such as lung cancer.4,5 Our model aims to provide explanations for this discrepancy.
Population impact of widespread implementation of carcinogen control policies on bladder
cancer prevention. We will estimate the impact of existing policies that reduce smoking and/or other
relevant carcinogens on the prevention of bladder cancer.
Effectiveness of bladder cancer screening among high-risk subgroups. Routine bladder cancer
screening is not recommended in the U.S. in part because of low disease incidence and the invasive
nature of cystoscopy.6 We will examine feasible screening strategies for high-risk subgroups, defined
by combinations of screening modalities and schedules.
Effectiveness and cost-effectiveness of risk-based surveillance strategies for patients with non-
muscle invasive bladder cancer (NMIBC). Although NMIBC is not life-threatening, it often recurs or
progresses, requiring chronic surveillance. To identify optimal strategies, we will explore feasible
surveillance policies, defined by combinations of testing modalities and schedules.
Comparative effectiveness of treatments for organ-confined bladder cancer. We will compare (i)
intravesical treatments for NMIBC, including bacille Calmette-Guerin (BCG) immunotherapy and
chemotherapies; (ii) novel treatments such as gene therapies and antibody-drug conjugates for BCG-
unresponsive NMIBC; and (iii) expanding bladder-sparing options, like immune checkpoint inhibitor-
based immunotherapy, to novel bladder-preserving strategies and biomarker-driven chemotherapies for
muscle-invasive bladder cancer (MIBC).

References
1. Maximilian Burger, James WF Catto, Guido Dalbagni, H Barton Grossman, Harry Herr, Pierre

Karakiewicz, et al. Epidemiology and Risk Factors of Urothelial Bladder Cancer. European Urology.
Elsevier; 2013;63(2):234–241.

2. Marcus GK Cumberbatch, Ibrahim Jubber, Peter C Black, Francesco Esperto, Jonine D Figueroa,
Ashish M Kamat, et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary
Update of Risk Factors in 2018. European Urology. Elsevier; 2018;74(6):784–795.

3. Neal D Freedman, Debra T Silverman, Albert R Hollenbeck, Arthur Schatzkin, Christian C Abnet.
Association between smoking and risk of bladder cancer among men and women. Jama. American
Medical Association; 2011;306(7):737–745.

4. NCI. SEER Cancer Stat Facts: Bladder Cancer 2019 [Internet]. 2019. Available from:
https://seer.cancer.gov/statfacts/html/urinb.html
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5. Rebecca L Siegel, Kimberly D Miller, Hannah E Fuchs, Ahmedin Jemal. Cancer Statistics, 2022. CA:
A Cancer Journal for Clinicians. 2022;72(1).

6. Virginia A Moyer. Screening for bladder cancer: US Preventive Services Task Force recommendation
statement. Annals of internal medicine. American College of Physicians; 2011;155(4):246–251.
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Model Overview
Summary
This section provides an overview of the Kystis model structure and its components.

Purpose
Kystis describes the natural history of bladder cancer and the impact of existing or emerging technologies
for its prevention, control, and management. See Model Purpose for more details.

Background
Bladder cancer is the sixth most common cancer in the U.S. and the fourth leading cause of cancer deaths in
men, with over 83,700 new cases and 17,200 deaths annually.1,2 The incidence of bladder cancer peaks after
age 70 and is about three times higher in men than in women.2-5 It is more commonly diagnosed in Non-
Hispanic White persons compared to Non-Hispanic Black, Asian, or Hispanic persons.2 However Non-
Hispanic Black and Hispanic people are more likely to be diagnosed at a later stage and have worse
outcomes.6-8 On a per-patient basis, bladder cancer is the most expensive cancer to manage, surpassing
colorectal, breast, prostate, and lung cancers.9,10 Risk factors include environmental exposures such as
cigarette smoking and chemical carcinogens found in the workplace or ingested, as well as genetic
abnormalities.11 Unlike other common cancers, the incidence and mortality rates of BC have remained
relatively stable over the past fifty years.1 The development of novel biomarkers and new treatments, including
immunotherapies (checkpoint inhibitors), gene therapies, and antibody-drug conjugates, is expected to have a
significant impact on bladder cancer epidemiology in the coming years.12-14

Model Description
Kystis is a microsimulation model where events are simulated in continuous time. It can simulate the natural
history of bladder cancer, exposures to environmental carcinogens (primarily smoking), and bladder cancer
diagnosis, treatments, surveillance, and mortality in the U.S. population. The model simulates individuals with
demographic attributes and bladder cancer risk factors, generate lesions and their trajectories.

Kystis models a series of events in parallel or sequentially (Figure 1). Hypothetical persons are instantiated
with a sex and race category and a birthdate – typically the midpoint (June 30) of a calendar year. The model
simulates mortality from other causes and exposure history in parallel from a person's birth. The lesion
instantiation process begins when a person enters the simulation (spawn moment) and ends with a terminal
event (death from bladder cancer or other causes). A person may develop zero, one, or several lesions. The risk
of lesion development is a function of demographic attributes and exposure history. Once a lesion develops, it
grows and progresses through a series of states, including death from bladder cancer as a terminal state. Lesion
growth and transitions impact symptom development, which in turn affects the clinical detection of bladder
cancer.
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Figure 1. Modeled processes in Kystis.

Implementation
Kystis is implemented in R. Users interface with a small set of classes that encapsulate all functionality:

The Population class handles the simulation of the natural history of bladder cancer and the history
of environmental exposures in a group of people. It includes methods to set up groups with user-
defined demographics (birthdate, sex, race), and simulates their smoking and other exposure histories;
initiates bladder cancer lesions and their evolution; and tracks symptoms and clinical diagnoses in
individuals with bladder cancer.

The LesionSet class handles the complete counterfactual history for the evolution of each lesion
from its inception, to possibly, bladder cancer death.

The states that bladder lesions can take and the allowed transitions between the lesion states are
prescribed by the StatesGraph class. This object includes a graph of lesion states, with edges for
the allowable transitions.

An RNGStreams class instantiates independent random number streams that enables using Common
Random Numbers or Antithetic Random Numbers for different parts of the simulation, using the
L'Ecuyer-Lécot generator.15,16 For example, there are different random number streams for smoking
exposures, other toxin exposures, background mortality, lesion generation, lesion progression, testing
strategies and treatment strategies.

The Simulator class is responsible for setting up and running a simulation and, as needed, updating
the simulation to run with alternative scenarios.

The Calibrator class provides a convenient interface for handling calibration tasks. It generates
calibration designs de novo or augments an existing design using various methods; updates the
simulated population for (a subset of) the design, records results, and evaluates objective functions.

Kystis is implemented in R as a standalone package. The model is fully vectorized and some of its
calulations are multi-threaded. A set of ancillary R packages abstract functionality that can be used by other
models or more generally, and are imported into Kystis. Specifically,

The nhppp package implements high performance algorithms written in C and C++ for the vectorized
simulation of event times from non-Homogeneous Poisson Point Processes. Simulating point processes
is the computational workhorse with user-specified intensity and cumulative intensity functions.17,18

The mortality package, which simulates death from any cause in the U.S. population based on
historic data from various user-selectable sources.
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Exposure generators, currently represented by smokingHxGen, an extensively verified
mathematically and numerically equivalent adaptation of the CISNET Lung Group Smoking History
Generator version 5.2.1.19

Modules for bladder cancer screening, surveillance, and treatment are under development.
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Assumption Overview
Summary
This section is an overview of assumptions for the Kystis natural history model.

Background
Kystis simulates persons who have a urinary bladder. As persons age, and depending on their exposure
histories and baseline risk, lesions may appear on the surface of the bladder. Lesions grow following one of
four growth patterns that correspond to the WHO 2004 classification of urothelial and non-urothelial
carcinomas. Lesions with different growth patterns have different growth curves, morphology, and invasive
potential. Symptoms may appear depending on the lesions’ size, location (e.g., involving the trigone of the
bladder), and morphology.

Assumption Listing
Sampling times

We use Nonhomogeneous Poisson Point Processes (NHPPP) to sample event times. An NHPPP has the
properties that the number of events in all non-overlapping time intervals are independent random variables
and that, within each time interval, the number of events is Poisson distributed. Kystis model utilizes nhppp
package to generate event times using the following algorithms: (i) time-transformation of a homogeneous
Poisson process via the inverse of the integrated intensity function, and (ii) thinning of a majorizing NHPPP
via an acceptance-rejection scheme.1,2

Lesion risk
We model the occurrence of lesions using NHPPPs. Let  measure time for the -th person. We assume that the
numbers of lesions in any finite set of non-overlapping time intervals are independent random variables, and
that the number of lesions at any interval has a Poisson distribution. The instantaneous rate function of the
process is a continuous positive function that is bounded on any finite interval.

Above,  is the indicator function,  is the set of covariates encoding age. The risk contribution
 may include genetic information and it is currently limited to having Lynch Syndrome vs

not.  encodes smoking status or intensity variables.  encodes environmental
exposure histories, which are under development. These risk contributions have the following functional
forms:

where,  are hyperparameters for the random intercept, and  and  are sets of covariates
encoding smoking and environmental exposures, respectively.

The integrated rate of the process in the interval  is the bounded non-decreasing function
.

It is the expected number of lesions in .
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Lesion growth

We use a Verhulst model to simulate lesion growth.3 We assume that the rate of tumor growth (in terms of
number of cells per year) is

,

where  is the tumor's cell population at time 0,  is a proportionality constant with units ,
and  is the "carrying capacity" of the tumor, or the maximum number of cells that the tumor can attain
(measured in cells). If the starting size  and the maximum size  of the lesion are fixed, the growth curve
depends only on the parameter .

The time , measured in s, needed to reach a critical number of cells  is obtained from
.

In the beginning the growth is almost exponential. The growth curve is convex until the inflection point at
 and then it becomes concave approaching asymptotically the carrying capacity .

We make the following assumptions for the growth curve:

1. We instantiate lesions a size of  cells, which corresponds to a volume of .4

2. The carrying capacity for VLIP, HIP, NUC is assumed to be about  cells, corresponding to a
spherical tumor of radius .

3. The carrying capacity for CIS is assumed to be  cells. This corresponds to a CIS covering
half of the bladder surface at a depth of 3 cellular layers.5

4. VLIP, HIP, and NUC lesions become visible when they are about  in diameter, which
corresponds to a size of  cells.

5. CIS lesions are assumed to become visible when they occupy an area of  (roughly 7-8 
circumscribed circle diameter), which is the average size of a tile. This corresponds to approximately

 cells - so CIS becomes visible soon after it appears.
6. Lesions become visible after  years for  and after 

years for CIS.
7. An average growth rate for bladder cancer lesions has been estimated at   for all

.6 This would suggest that from inception, non-CIS lesions would become visible within
approximately 107 days (3.6 months), but CIS lesions would be visible at inception (more
accurately, after about 7 days).

Lesion starting states and transitions

Figure 1 shows the modeled transitions from lesion inception to death from bladder cancer. Lesions first
appear in states 0, 1, 2, 4, 6, or 8. Arrows represent allowable transitions that follow a NHPPP law. PUMLNPs
(state 0) do not commonly advance to Ta lesions.5 VLIP lesions (state 1) do not transition to other states.
However they can grow in size and give symptoms like all other lesions.
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Figure 1. Transitions between states for lesions in Kystis and designation of cancer status
at the person level.

We assume that

HIP (HG) is more aggressive than HIP (LG) of the same size, so that  and .
We assume that NUC is at least as aggressive as HIP (HG) of the same size, so that  and

CIS lesions are flat and their tumor cell size tends to be smaller that that of other growth patterns. For
example, for CIS the carrying capacity is  cells, where as for other growth patterns

 cells. Thus the 's for CIS are not explicitly constrained with respect to those of the
other growth patterns and are set through calibration.

The instantaneous rates for transitions are a function of the size of the lesion.

Transitions from PUMLNP to Ta-LG ( ) are considered uncommon.5 Analogously, transitions from low
grade tumors to Advanced disease may be uncommon or rare. Such uncommon or rare transitions are modelled
with zero-inflated NHPPP.

 ,

where the probability that a transition will occur  is obtained via calibration.

Symptom onset

We make the following assumptions:

The majority of patients who present with symptoms have gross hematuria (80%); we assume that the
rest report primarily symptoms during micturition.5

A person becomes symptomatic when they develop either hematuria or symptoms during micturition.
The probability of hematuria is related to the size of individual lesions.
The probability of symptoms during micturition is related to

1. the fraction of the total surface area of the bladder that is occupied by at least one lesion.
2. the fraction of the surface area of the trigone that is occupied by at least one lesion

We assume that we can model onset of symptoms and clinical detection using NHPPP.

Onset of voiding symptoms

The time that the -th person will experience voiding symptoms is measured on a person clock starting from
the instantiation of the first lesion ( ).
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We assume that the time to symptom onset is modeled with a NHPPP with instantaneous rate
 .

Above,  indexes lesions in ,  is the set of lesions that are present at time , and involve at least
 on the surface of the bladder,  is the area of the bladder's surface that is occupied by lesion

, and  is the area of the trigone that is occupied by lesion . The coefficients  and 
determine the association between symptoms during micturition and the proportion of the surface of the
bladder of the trigone that is occupied by a lesion, and  is an intercept term.
To facilitate calibration, we assume that  are global constants.

Onset of macroscopic hematuria

For the -thlesion of the -th person we model the onset of macroscopic hematuria, as measured on the lesion
clock, as the first event from a NHPPP with instantaneous rate

 ,

where the coefficient  determines the association between symptoms of hematuria and the size of the
lesion. To facilitate calibration, we assume that the intercept  and  are fixed parameters.

Clinical detection
The probability of clinical detection by time , measured on the person clock starting from the instantiation of
the first lesion . It is modelled as the time to the first event in a NHPPP with instantaneous rate

,

where  is measured on the person clock, , is the time after the onset of voiding symptoms
and zero otherwise, and  the time after the earliest onset of hematuria symptoms and 0
otherwise. We assume that delays in diagnosis are in part a misattribution of symptoms to urinary infections
(for women) or barriers to seeking care (in Black individuals).7

Sojourn time
The sojourn time is the length of the time interval between the moment that a malignant lesion  becomes
detectable by cystoscopy, , and the time that a person is symptomatic and has clinically
detectable cancer, . It is defined for lesions that have muscle-invasive potential. It is not
modeled explicitly, but it is calculated based on other quantities.

Time to death

We assume that a person can die from causes related to bladder cancer and other causes. We model time to
each cause of death with competing NHPPP. The earliest time of death (due to bladder cancer or other causes)
is the one that is realized. Another assumption is that death from other causes than bladder cancer is
approximately equal to that of all causes in the general population stratified by age, sex, race, and smoking
history.

When modeling time to death from bladder cancer, we assume that: (i) patients with NMIBC or earlier stages
of the disease have a very low probability of dying from bladder cancer; (ii) patients die of bladder cancer if
they have MIBC or metastatic disease; and (iii) patients with metastatic disease experience shorter bladder
cancer survival rates.
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Parameter Overview
Summary
Describes the basic parameter set used to inform the model, more detailed information is available for each
specific parameter.

Background
The Kystis model uses two types of parameters:

Fixed parameters: These include global constants such as the maximum age of a person or baseline
specifications of the urinary bladder. These parameters are detailed in the Component Overview.
Calibrated parameters These parameters are used to define and adjust model processes, such as how
lesions start and progress. They are fine-tuned to ensure the model's output closely matches observed
data. This page focuses on calibrated parameters.

For more information on the equations used, refer to the Assumption Overview.

Parameter Listing Overview
Table 1 summarizes the parameters used in the Kystis model to simulate bladder cancer onset, lesion growth
and transitions, symptom development, and clinical detection.

Lesion instantiation rate depends on factors such as sex, race, age, and exposure history. Exposure
history is limited to smoking in the current version of the model and accounts for both smoking status
and smoking intensity. The age is modeled as a continuous covariate with additional risk after specific
age thresholds (i.e., greater than {50,55,60,65,70,75,80,85}). The risk is capped at older ages (

) to match the plateau observed in age-specific bladder cancer incidence curves.
Lesion instantiation parameters vary by the tumor grade (low or high grade).
Lesion growth is a Verhulst model, which is based on a time-varying tumor growth rate measured in
the number of cells per day. Two additional parameters (  and

) scale growth curves for lesions with VLIP and HIP growth patterns.
Voiding symptoms rate is a function of lesion spread on the urinary bladder surface. Lesions located at
the bladder trigone are assumed to increase the likelihood of voiding symptoms.
Macroscopic bleeding is modeled as a function of lesion size measured in cells.
Bladder cancer clinical detection depends on the time since symptom onset (if symptoms are present),
sex, race, and the development of advanced disease (e.g., MIBS or metastasis).
Lesion transitions are modeled using a graph consisting of vertices (nodes) and edges connecting pairs
of vertices. Vertex parameters include the names of allowed states, starting state probabilities, and
morphology probabilities. There are 16 allowed edges in the graph, each as a function of lesion size.
Two edges ('PUNLMP [VLIP]' to 'Ta-LG [HIP LG]' and 'T1-LG [HIP LG]' to 'Locally advanced
disease') are considered uncommon and are modeled with zero-inflated NHPPP, using zero mass
probability as an additional parameter.

Table 1. Kystis calibrated parameters.

A. Lesion instantiation.

Parameter Hyperparamet
ers

Description

Log risk of bladder cancer among unexposed White Men at birth

Change in log risk of bladder cancer for Lynch syndrome vs. not

Change in log risk of bladder cancer for Female vs. Male biological sex

Change in log risk of bladder cancer for Black vs. White Race
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Parameter Hyperparamet
ers

Description

Change in log risk of bladder cancer per unit [year] increase in age, for ages below

If age is ≥ X years, these terms add a constant value to the log risk of bladder
cancer

Age beyond which bladder cancer risk is capped

Change in log risk of bladder cancer for former smokers vs. not

Change in log risk of bladder cancer per unit increase in smoking cumulative
intensity

Change in log risk of bladder cancer per unit increase in toxin cumulative intensity

B. Lesion growth.

Parameter Hyperpar
ameters

Description

Rate of tumor growth, number of cells per day

Multiplyer for the rate of tumor growth in lesions with VLIP growth pattern

Multiplyer for the rate of tumor growth in low-grade lesions with HIP growth pattern

Log of tumor's cell population at time 0

Ratio of tumor's cell population at time 0 and the maximum number of cells that the
tumor can attain (measured in cells) in lesions with VLIP, HIP or NUC growth pattern

Ratio of tumor's cell population at time 0 and the maximum number of cells that the
tumor can attain (measured in cells) in lesions with CIS growth pattern

C. Voiding symptoms.

Parameter Hyperparame
ters

Description

Risk of voiding symptoms at lesion instantiation

Risk of voiding symptoms per unit change in the area of the bladder's surface that
is occupied by lesion

Risk of voiding symptoms per unit change in the area of the bladder's trigone that
is occupied by lesion

D. Macroscopic bleeding.

Parameter Hyperparameters Description

Risk of macroscopic bleeding at lesion instantiation

Risk of macroscopic bleeding per unit change in the log of tumor's cell population

E. Clinical detection.

Parameter Hyperparam
eters

Description

Risk of clinical detection of NMIBC in White Males without symptoms

Change in risk of clinical detection for Female vs. Male biological sex

Change in risk of clinical detection for Black vs. White Race

Change in risk of clinical detection per unit increase in time since macroscopic
bleeding started or zero otherwise

Change in risk of clinical detection per unit increase in time since voiding
symptoms started or zero otherwise

Change in risk of clinical detection for developing MIBC vs. NMIBC or
precancerous states

Change in risk of clinical detection for developing metastatic disease vs. NMIBC
or precancerous states
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F. Lesion graph vertices.

Parameter Hyperparameters Description

Proportion of low grade
lesions at lesion instantiation

{'Papilloma [VLIP]', 'PUNLMP [VLIP]', 'Ta-LG [HIP LG]', 'T1-LG [HIP
LG]', 'Ta-HG [HIP HG]', 'T1-HG [HIP HG]', 'Tis [CIS]', 'T1-HG [CIS]',
'T1-HG [NUC]', 'Locally advanced disease', 'Metastasis', 'BC death'}

Allowed lesion states

{0, 0, 0.675, 0, 0.225, 0, 0.09, 0, 0.01, 0, 0, 0} Probabilities of lesion states
at onset, in the order of

{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0} Probabilities of flat
morphology at lesion onset,
in the order of 

{1, 1, 0.8, 0.8, 0.2, 0.2, 0, 0.2, 0, 0, 0, 0} Probabilities of stalked
morphology at lesion onset,
in the order of 

G. Lesion graph edges.

Parameter Hyperpara
meters

Description

Change in risk of lesion transition from 'PUNLMP [VLIP]' to 'Ta-LG [HIP LG]' per
unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'Ta-LG [HIP LG]' to 'T1-LG [HIP LG]' per
unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-LG [HIP LG]' to 'Locally advanced
disease' per unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-LG [HIP LG]' to 'BC death' per unit
increase in log of lesion size measured in cells

Change in risk of lesion transition from 'Ta-HG [HIP HG]' to 'T1-HG [HIP HG]' per
unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-HG [HIP HG]' to 'Locally advanced
disease' per unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-HG [HIP HG]' to 'BC death' per unit
increase in log of lesion size measured in cells

Change in risk of lesion transition from 'Tis [CIS]' to 'T1-HG [CIS]' per unit
increase in log of lesion size measured in cells

Change in risk of lesion transition from 'Tis [CIS]' to 'Locally advanced disease' per
unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-HG [CIS]' to 'Locally advanced disease'
per unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-HG [CIS]' to 'BC death' per unit
increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-HG [NUC]' to 'Locally advanced
disease' per unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'T1-HG [NUC]' to 'BC death' per unit
increase in log of lesion size measured in cells

Change in risk of lesion transition from 'Locally advanced disease' to 'Metastasis'
per unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'Locally advanced disease' to 'BC death' per
unit increase in log of lesion size measured in cells

Change in risk of lesion transition from 'Metastasis' to 'BC death' per unit increase
in log of lesion size measured in cells

Probability of observing no transitions from 'PUNLMP [VLIP]' to 'Ta-LG [HIP LG]'
in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'Ta-LG [HIP LG]' to 'T1-LG [HIP LG]'
in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'T1-LG [HIP LG]' to 'Locally advanced
disease' in a given interval in zero-inflated NHPPP
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Parameter Hyperpara
meters

Description

Probability of observing no transitions from 'T1-LG [HIP LG]' to 'BC death' in a
given interval in zero-inflated NHPPP

Probability of observing no transitions from 'Ta-HG [HIP HG]' to 'T1-HG [HIP HG]'
in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'T1-HG [HIP HG]' to 'Locally advanced
disease' in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'T1-HG [HIP HG]' to 'BC death' in a
given interval in zero-inflated NHPPP

Probability of observing no transitions from 'Tis [CIS]' to 'T1-HG [CIS]' in a given
interval in zero-inflated NHPPP

Probability of observing no transitions from 'Tis [CIS]' to 'Locally advanced disease'
in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'T1-HG [CIS]' to 'Locally advanced
disease' in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'T1-HG [CIS]' to 'BC death' in a given
interval in zero-inflated NHPPP

Probability of observing no transitions from 'T1-HG [NUC]' to 'Locally advanced
disease' in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'T1-HG [NUC]' to 'BC death' in a given
interval in zero-inflated NHPPP

Probability of observing no transitions from 'Locally advanced disease' to
'Metastasis' in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'Locally advanced disease' to 'BC death'
in a given interval in zero-inflated NHPPP

Probability of observing no transitions from 'Metastasis' to 'BC death' in a given
interval in zero-inflated NHPPP
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Component Overview
Summary
A description of the basic computational building blocks (components) of the model.

Overview
Kystis models the natural history of bladder cancer through a combination of parallel and sequential
processes. It generates a population where each person has specific demographic attributes. From birth, the
model simulates mortality from causes other than bladder cancer and tracks exposure history. Individuals can
develop zero, one, or multiple lesions. The process of lesion formation begins when a person enters the
simulation (spawn moment) and is influenced by their demographic attributes and exposure history. Once a
lesion instantiated, it grows and progresses through several stages and can ultimately result in death from
bladder cancer. Lesion growth and transitions impact symptom development, which in turn affects the clinical
detection of bladder cancer.

Component Listing
Time clocks

We use time clock objects to count time unambiguously. These objects have an internal representation that is
concordant with ISO 8601.1 They have a common origin date, are aware of time units, and can be aligned with
each other.

In the simulation, we measure time on calendar, person and lesion clocks, where for the -th person and -th
lesion:

 

 

 

Person

When instantiated, each simulated person has or is associated with

a ;
a simulation start age, , measured in ;
a  that measures time in the simulation;
a biological sex, ;
a  object that defines a smoking exposure personal history;
a  object that defines a personal history of environmental or occupational toxin
exposure;
a  object, which may include genetic information. Currently, this is limited to having
Lynch Syndrome.

Urinary Bladder
Table 1 describes the parameters we chose for the simulation of a urinary bladder.

Table 1. Urinary bladder specifications.
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Item or
variable

Description Value Units Explanation

Bladder sphere radius A distended bladder is a sphere that has
500 mL capacity.

Bladder sphere volume

Bladder sphere area

Number of tiles 678 [tiles]

Dual graph of tiling, number of
vertices

678 [vertic
es]

As many as the tiles

Dual graph of tiling, number of
edges

2028 [edges
]

As many as the boundaries between
tiles

Tiles Area

Circumscribed circle diameter

Trigone Convex hull on the tesselation
(vertices in )

1, 36, 86 1: urethra, 36: left ureter, 86: right
ureter

Arc length between ureteral orifices distended

Actual trigone arc lengths based on the tesselation

Actual dihedral (included) angles of
trigone vertices

(1.21, 1.22, 1.25) [radia
ns]

about 69-71 degrees

Area of trigone  4% of 

An empty bladder is approximately tetrahedral and its lining (urothelium) forms mucosal folds. As it fills, it
first becomes ellipsoidal and then approximately spherical, and its folds get flattened out. We assume that a
fully distended bladder (e.g., during cystoscopy) can be satisfactorily approximated with a convex polyhedron
inscribed in a  sphere. The surface of the polyhedron approximates the surface of the bladder sphere
by inducing a polygonal tiling (tesselation)  of the sphere's surface, where  is
the -th facet (tile) and  is the total number of the facets (tiles) of the polyhedron.

**Figure 1 ** shows the chosen tiling , which has  tiles with mean area about . The
diameter of the circle that circumscribes each hexagonal tile is approximately . The dual graph  of
the tiling  has 678 vertices and 2028 edges. Vertices represent the centroids of the tiles and are shown as
circularly-arranged small black and red dots. The three vertices that define the trigone (vertices 1, 36, and 86)
are depicted larger and in red. Undirected edges (thin gray lines) connect vertices when the respective tiles
share a border. Most tiles are hexagonal and have six adjacent tiles, thus most vertices have degree six.

Figure 1. Polyhedral approximation of the urinary bladder in the Kystis.

Bladder cancer lesion
A person may develop zero, one or several lesions. Precursor dysplastic lesions may appear and regress or
grow to become benign or malignant tumors. We do not explicitly model the process of developing and
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regressing dysplastic lesions. We model lesions conditional on that they will not regress. Such a non-regressing
lesion

1. Starts on a single tile.

2. Starts as a noninvasive tumor.

3. Follows one of four archetypical growth patterns, which correspond to the WHO 2004 histological
grading of bladder cancer tumors:

CIS: urothelial carcinoma in situ, which has a flat morphology and grows on the surface of the
bladder.
VLIP: very low invasive potential. This type includes the WHO 2004 categories of papillomas,
inverted papillomas, and primarily papillary urothelial neoplasia with low malignant potential
(PUNLMP). For simplicity, all VLIP lesions are assumed to be pendunculated and papillary in
appearance. Their risk of progression is assumed to be negligible.
HIP: higher invasive potential. This type includes urothelial neoplasias that can evolve to
invasive cancer before developing symptoms. They can be papillary or non-papillary, but
assumed to be more often sessile rather than pendunculated. They include lesions that will
evolve to low grade and high grade papillary urothelial carcinomas (LGPUC, HGPUC).
NUC: non-urothelial malignancies comprising squamous cell carcinomas and
adenocarcinomas. They have a more-aggressive growth curve than the HIP category, so they
become invasive at an earlier tumor burden. They are assumed to be non-papillary and sessile.

4. Has a . Low-grade tends to grow slowly. High-
grade is more likely to grow into the bladder wall and spread outside the bladder. Histology is
important in determining the probability that a HIP will become muscle invasive.

5. Has a  that is determined by the growth pattern. In terms of configuration morphology, a
lesion may be flat, papillary, or non-papillary; and in terms of stalk morphology a lesion may be
pendunculated (with a stalk), sessile (protruding without a stalk) or flat (which also has no stalk). The
stalk morphology determines the growth of the base area of a lesion as a function of the lesion's size or
volume.

6. Has a  measured in number of cells, which also determines a volume measured in . A lesion's
size evolves over time following a Verhulst growth model.

7. Has a , which is the part of the surface of the bladder that is occupied by the lesion. The lesion's
base is represented as a set of contiguous tiles in , or, equivalently, a connected subgraph of .
We record which tiles of the base belong to the trigone because this is important for determining the
probability of symptoms during micturition. As the lesion grows, so does its base; the growth curve for
the base area is related to the growth curve of the lesion's number of cells, and the stalk morphology.

Table 2 summarizes lesion stages, corresponding grades, and growth patterns in the Kystis model. The
AJCC TNM staging system, commonly used for bladder cancer, describes the tumor's growth pattern and
extent (T), lymph node involvement (N), and metastasis (M). Kystis can generate precancerous (PUNLMP)
and benign (papillomas) lesions. It models non-muscle invasive cancer with Ta and Tis stages, which can
progress to T1. Kystis does not differentiate between AJCC stages of muscle invasive cancer (T2, T3) and
distant metastasis (M1a, M1b), and it does not model lymph node involvement (N). Lesion transitions are
described in Model Assumptions.

Table 2. Bladder cancer staging in the Kystis.

AJCC Staging
System (8th
edition, 2017)

Kystis Stage Kysti
s
Grad
e

Kystis
Growth
Pattern

Description

- PUNLMP - VLIP Papillary Urothelial Neoplasm of Low Malignant Potential; a pre-
malignant tumor, very slow-growing and unlikely to spread.

- Papilloma - VLIP Urothelial papilloma, a rare benign tumor of the bladder.
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AJCC Staging
System (8th
edition, 2017)

Kystis Stage Kysti
s
Grad
e

Kystis
Growth
Pattern

Description

Ta Ta Low,
High

HIP Non-invasive papillary carcinoma. It has grown toward the hollow
center of the bladder but has not grown deeper into the connective
tissue or muscle of the bladder wall.

Tis Tis - CIS Flat, non-invasive carcinoma. The cancer is growing in the inner
lining layer of the bladder only.

T1 T1 Low,
High

HIP, CIS,
NUC

The cancer has grown into the layer of connective tissue under the
lining layer of the bladder, but it has not reached the layer of muscle
in the bladder wall.

T2a, T2b, T3a,
T3b

Locally
Advanced
Disease
(MIBC)

- - The cancer has grown through the muscle layer of the bladder (T2)
or into the layer of fatty tissue surrounding the bladder (T3), but it
has not spread to adjacent organs or distant parts of the body.

T4a, T4b, M1a,
M1b

Metastasis - - The cancer have spread into the prostate, seminal vesicles, uterus,
vagina, pelvic or abdominal wall (T4) or to distant parts of the body
(M1).

Lesion instantiation

In the Kystis model, the risk of lesion occurrence depends on person's demographic characteristics, such as
sex, race and age, and exposure histories. We simulate lesions occurrence using non homogeneous Poisson
point process (NHPPP). In an NHPPP, each event occurs independently of others, which doesn't accurately
reflect the nature of cancer progression where existing lesions can influence the occurrence of new ones.
Currently, we are extending the model functionality to implement Hawkes process for the generation of
subsequent lesions. Hawkes process is self-exciting, meaning that each event increases the rate of future events
temporarily.

Lesion growth and progression
Once a person develops a lesion, it begins to grow following the Verhulst model, also known as the logistic
growth model. The lesion grows rapidly at first, then slows as it approaches its carrying capacity. For Tis
lesions, the carrying capacity is the number of cells that line half the surface of the bladder. For all other
tumors, it is the number of tumor cells that occupy one-third of the volume of a distended bladder. The
"steepness" of the growth curve is determined by the growth rate, which varies by lesion archetype (growth
pattern).

Allowed lesion states and transitions are defined by the graph object. Papillomas, PUNLMPs, Tis, and low-
and high-grade Ta tumors are primary lesions. PUNLMPs are not malignant but may occasionally evolve into
malignant lesions, thus constituting precursor lesions. Papillomas and inverted papillomas are modeled as
benign-only lesions that can manifest clinically. In the Kystis model, a lesion’s histologic grade is
immutable once set at its inception (Ta-LG, Ta-HG). The model grows Ta lesions to T1 (T1-LG and T1-HG)
without cross-transitions between the low- and high-grade paths. Tis lesions can become T1 lesions or lead
directly to MIBC and then to metastatic disease. We use NHPPP to sample times of lesion transitions, where
the instantaneous rate is a function of the size of the lesion.

Symptoms
The Kystis model includes two types of symptoms: macroscopic hematuria (blood in the urine) and
irritative symptoms during urination. The instantaneous rate of voiding symptoms is influenced by the location
of the lesions (whether in the trigone or elsewhere) and the total area of the bladder covered by one or more
lesions. The rate of hematuria is determined by the size of the lesion. Both symptom types are simulated using
NHPPP.
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Clinical detection

We use NHPPP to simulate the clinical detection of bladder cancer. The instantaneous rate of clinical detection
depends on sex, race, and the duration of bladder cancer symptoms, such as hematuria and voiding symptoms.
Women and Black individuals tend to be diagnosed later on average due to the misattribution of symptoms to
urinary infections for women or barriers to seeking care for non-Whites.2

Exposure history

Exposure generator is currently limited to smoking history and utilises the CISNET Lung Cancer Group
Smoking History Generator (SHG).3 The SHG simulates life histories of people born in the U.S. between 1864
and 2100, tracking them up to age of 99. These histories include the year of birth and the age of death from all
causes and causes other than lung cancer, conditional on smoking exposure. For each simulated person, the
SHG simulates age they started smoking, smoking intensity defined as cigarettes per day at yearly intervals,
and the age they quit smoking. Outputs are stratified by sex and race. The SHG does not account for recurrent
smoking.

We adapted the SHG for R programming language and introduced sampling from NHPPP to draw times of
smoking initiation, smoking sessation and deaths.

Mortality
We sample death times using NHPPP based on data from the Human Mortality Database (overall mortality)4

and the CISNET Lung Cancer Group Smoking History Generator3 (mortality conditional on smoking history).

Bladder cancer death is modeled as one of the lesion transitions. A person can die from bladder cancer if one
or more lesions progress to muscle-invasive disease or metastasis. The hazard of dying from bladder cancer at
the non-muscle invasive stage (T1) is negligible; though it is still possible. The first occurrence of death,
whether from bladder cancer or other causes, is the one that is taken into account.

Surveillance
The surveillance module has not been implemented yet.

Screening

The screening module has not been implemented yet.
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Output Overview
Summary
Definitions and methodologies for the basic model outputs.

Overview
The Kystis model simulates the U.S. population born between 1920 and 2000, encompassing their
environmental exposures and the natural history of bladder cancer. This model generates two datasets
containing person-level and lesion-level variables. These datasets are utilized to summarize population-level
measures, including age- and stage-specific incidence of bladder cancer, and lifetime risk of developing
bladder cancer. The outputs are stratified by race, sex, and exposure status.

Output Listing
Figure 1 illustrates the structure of the primary datasets generated by the Kystis model. The person-level
dataset includes demographic variables, birth date, cohort, and spawn age, which is the age at the beginning of
the simulation. Exposure variables in the person-level dataset are limited to ever-exposed status. However,
detailed smoking history can be obtained from the Smoking History Generator dataset linked by person_id,
which provides information on smoking initiation age, smoking cessation age, and smoking intensity measured
in cigarettes per day. The variable toxin_ever_exposed serves as a placeholder for occupational and
environmental exposures that will be incorporated in future model releases. Variables representing the natural
history include ages at two types of modeled symptoms (voiding symptoms and macroscopic bleeding), age
and stage at clinical detection, and ages at various stages of bladder cancer (NMIBC, MIBC, metastasis). The
person-level dataset also includes bladder cancer mortality and mortality from other causes, with
age_dead_all_causes representing the minimum of these two.

The person-level and lesion-level datasets are linked by person_id. The lesion-level dataset is in a long
format and includes variables related to lesions (lesion_id) and lesion transitions (transition_id).
Lesion-level variables encompass the inception moment of the lesion, i.e., the date when the lesion appeared,
and the persons's age at that moment, as well as lesion morphology. Each lesion transition is described with a
state name, moment at state, and age at state on both the lesion's and persons's clock. Additionally, each state is
categorized as precancerous lesion (is_VLIP), low-grade lesion (is_HIP_LG), non-muscle invasive
bladder cancer (is_NMIBS), muscle invasive bladder cancer (is_MIBS), metastatic disease
(is_metastasis), or the terminal state (is_bcdeath).

Figure 1. Bladder cancer natural history data sets in the Kystis model.
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Population-level outputs include age- and stage-specific incidence of bladder cancer and lifetime risk of
developing bladder cancer (Table 1).

Table 1. Population-level outputs in the Kystis model.

Output Definit
ion

Description

Age-specific incidence
rate of bladder cancer per
100,000

 is a number of people diagnosed with bladder cancer and  is a total
population at risk in the age interval . We use SEER 5-year age interval breaks
starting from the age of 40, which is a spawn age in the model. Ages over 85 years
are groupped as 85+ category.

Age-specific cumulative
incidence rate of bladder
cancer per 100,000, by
stage

"NMIBS low grade", "NMIBS, high grade", "MIBS", "metastasis" .

Lifetime risk of
developing bladder
cancer

 is the allowed maximum age in the simulation,  is age-specific incidence of
bladder cancer at age , and  is a probability of surviving by age .

Mean sojourn time  is person's age of bladder cancer clinical detection,  is person's age at the first
lesion inception moment, and  is a total number of people diagnosed with bladder
cancer.
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Results Overview
Summary
A guide to the results obtained from the model.

Overview
In the current version, we calibrated parameters of the natural history of bladder cancer for White Men, the
population subgroup with the highest incidence of bladder cancer. We compared simulated data versus
corresponding 2010 SEER estimates for a population-based simulation. We simulated the US population as
stacked cohorts of people born between 1910 and 2010 (covering 0-100 years of age in 2010) with relative
cohort sizes proportional to CENSUS data. We compared the simulated incidence in 5-year age groups (i.e.,
40-44, 45-49, …, 80-84, 85+) with the corresponding age groups for the 2010 diagnosis year. The model was
calibrated using EGO algorithm variant and BayCANN.1,2We used Latin-Hypercube sampling to generate
design points and used the Poisson (pseudo)-likelihood as a calibration objective.

Additionaly, we examined how the calibrated model simulate key events, that are not directly observable in the
data, such as tumor emergence, MIBC, and metastasis. We calculated age distributions at these events and the
distributions of the time intervals between them for a cohort of White Men born in 1950.

Results
Figures 1 & 2 compare the simulated versus observed age- and stage-specific incidence of all bladder cancers
at diagnosis in White Men for 2010. For almost all age- and stage-groups, the uncertainty intervals of the
simulated and observed incidences overlap, indicating good agreement.

Figure 1. Age-specific bladder cancer incidence in White Men (U.S. in 2010).
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Figure 2. Stage-specific bladder cancer incidence in White Men (U.S. in 2010).

Figure 4 illustrates the lifetime risk of being diagnosed with bladder cancer. According to the model,
individuals born in 1900 had an estimated lifetime risk of 2.0 percent. This risk gradually increased over time,
following changes in life expectancy and smoking exposure. Estimates from Kystis indicate that lifetime risk
peaked at 3.6 percent for those born between 1940 and 1950, then declined before rising again among the 1970
to 1980 birth cohorts.

Figure 3. Bladder cancer lifetime risk in White Men (U.S., 1900-2040).

Figure 4a presents the predicted age-standardized incidence of bladder cancer from 2000 to 2040, using the
US 2000 standard population as a reference. The model predictions align qualitatively with SEER data from
2000 to 2022, showing a slight decline in age-standardized incidence. SEER data indicates that incidence
remained stable through 2004, followed by an annual decline of 1% from 2005 to 2022. Kystis estimates a
more gradual decline of 0.6% per year between 2005 and 2021. The projected age-standardized incidence for
2040 is approximately 31.1 new cases per 100,000 person-years.
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Figure 4a. Annual bladder cancer incidence in White Men (Age-adjusted estimates, U.S.
2000 standard population).

Projections of age-standardized incidence do not fully capture the expected changes in the population burden
of bladder cancer. Figure 4b presents projections of the crude annual incidence of bladder cancer through
2040. According to Kystis, the annual incidence rate is expected to rise steadily from approximately 37
cases per 100,000 person-years in 2010 to around 45 cases per 100,000 person-years by 2040.

Figure 4b. Annual bladder cancer incidence in White Men (Crude estimates, U.S.
population).

Figure 5 shows predicted annual prevalence of bladder cancer. According to the model, bladder cancer
prevalence is slowly decreasing by approximately 0.1% per year on average.
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Figure 5. Annual bladder cancer prevalence in White Men (U.S. population).

Table 1 shows the median and 25-th and 75-th percentiles of the ages of key events in the natural history of
bladder cancer as well as the time intervals between key events for the three models for White Men born in
1950. The median interval between the time when a lesion is detectable and diagnosis is about 3.3 years. The
median time to MIBC from lesion emergence is about 2.7 years, and from MIBC to metastasis is about 1 year,
with a wide distribution across simulated individuals.

Table 1. Ages of and time intervals between key events (White Men, 1950 cohort).

Description Median (IQR)

Ages

First lesion emergence 73.0 (63.7, 80.7)

Diagnosis 74.5 (65.7, 82.0)

MIBC 75.9 (67.1, 83.0)

Metastasis 76.4 (67.8, 83.6)

Time intervals, years

Emergence to diagnosis 3.3 (2.7, 5.3)

Emergence to MIBC 2.7 (1.6, 4.4)

MIBC to metastasis 1.0 (0.4, 2.1)
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