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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Key References
A list of references used in the development of the model.

Further Reading
These topics will provide a intermediate level view of the model. Consider these
documents if you are interested gaining in a working knowledge of the model, its
inputs and outputs.
Advanced Reading
These topics denote more detailed documentation about specific and important aspects
of the model structure
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MODEL PURPOSE

SUMMARY
This page summarizes the purposes for which this model was developed.

PURPOSE
The model provides a quantitative link between dissemination of cancer control
processes and their impact on population and public health measures of cancer
incidence, survival and mortality. Its purpose is to unravel the myriad causes and
relationships that underlie recent trends in prostate cancer incidence and mortality, to
quantify the relationships in terms of model parameters, and to enable researchers to
perform inference on these parameters by means of confidence intervals and
hypothesis tests.

The model provides tools by which national population and cancer registry data may
be analyzed, so that the population impact of cancer control processes may be
understood and predicted. It exists that researchers might predict short- and long-term
trends in national incidence and mortality under various scenarios; might analyze
racial disparities as they pertain to factors associated with trends in treatment, survival,
incidence and mortality; and might determine and evaluate optimal screening
strategies.

A particular goal of this model is to enable researchers to determine in what way, if at
all, PSA screening of asymptomatic men is linked to the recent decline in prostate
cancer mortality. In fact, the model has already generated predictions for prostate
cancer incidence and mortality under current PSA utilization patterns, and for the
baseline case of no PSA screening. The latter prediction is counterfactual, in that it
expresses what incidence and mortality would have been during the years 1970-2000 if
there had been no PSA screening, other things being equal. Thus it yields an estimate
of the differences in incidence and mortality that are purely associated with PSA
utilization.
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MODEL OVERVIEW

SUMMARY
This document provides an overview of the modeling effort, and describes the model
itself in general terms.

PURPOSE
This is a model of prostate cancer incidence and mortality. It was developed to analyze
national population and cancer registry data. It is used to understand, predict and
optimize the population impact of cancer control processes in prostate cancer. See
Model Purpose for more details.

BACKGROUND
Excluding skin cancers, prostate cancer is the most common cancer in American men.
It claims over 40,000 lives annually, ten percent of cancer deaths among men, and is

second only to lung cancer as a cause of cancer deaths1. Progressive prostate cancer is a
serious disease. Thousands of men suffer pain and complications and die prematurely
from progressing tumors.

Management and control of prostate cancer is a significant public health problem. For
more than a decade since the introduction of PSA testing in the late 80s, the incidence
rates of newly diagnosed prostate cancers have seen a dramatic increase to over

190,000 cases in early 90s, followed by an equally dramatic decline2 (Figure_1). At the
same time, mortality slowly increased from the 70s to the early 90s, and has been

declining since then3 PSA screening has spread through the population because of the
hope that it ultimately may reduce mortality. But the mere fact that screens can detect
organ-confined prostate cancer does not in itself constitute a sufficient ground for their
implementation. Screening cannot be justified unless patients who are screened
actually have improved outcomes, and this has not yet been shown.

To make appropriate decisions regarding treatment and public health policy, we must
understand the causes of these trends. To do so, models are needed that can unravel
and disentangle all the factors behind the observed population trends, including length
bias, overdiagnosis, early detection of cases that would become clinical, shifts in stage
and grade of cancer associated with early detection, and other possible factors, such as
a change in the survival curve within stage and grade following the advent of PSA
screening.

The model reported here has several distinctive features that meet this challenge. These
include:

• Estimation from population data instead of from screening trial data.

• A flexible regression framework, accomodating explicit adjustments for
differences in screening and treatment utilization patterns.

• Analytic, rather than simulation-based, procedures for estimation and prediction.

• The identification of within-stage shift as a factor affecting survival and mortality.
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• Confidence intervals and tests of statistical hypotheses for all model parameters.

• A general structure, making the model applicable to cancer sites other than the
prostate.

Before describing the "guts" of the model, we briefly discuss these features.

Estimation from population data.
The parameters in our model are estimated from population databases such as SEER,
not from screening trial data. This mode of estimation is possible because we
incorporate random PSA schedules into the estimation procedure. This approach is
appropriate, since the focus of CISNET is on population trends in incidence and
mortality. To measure such trends, a model must unravel and disentangle a set of
competing risks and confounded effects, including length bias, overdiagnosis,
advancement of diagnosis due to screening, stage shift due to early detection, and
other possible effects, such as within-stage shift. No randomized trial for which data
are currently available has been designed to measure all these effects. To model such
effects, it is critical that methods be developed that can exploit population data for
estimation. Our model does this.

Since our estimation procedure is based on population databases, we are able to exploit
the wealth of information available from these databases. The consequences for
precision and power are substantial, since population databases are typically much
larger than the number of individuals participating in a screening trial. Increased
power enables us to obtain reliable estimates on a potentially larger set of model
parameters than would be possible were the estimation based on screening trials.

A flexible regression framework.
The model is constructed within a flexible framework that uses concepts of survival
analysis, yet is not limited to the standard Cox proportional hazard model. This
framework accomodates adjustments for variable screening and treatment utilization
patterns through built-in lead-time, length-bias and stage- and within-stage shift, all of
which may affect survival. This framework allows the reseacher to derive realistic
estimates of mortality through joint modeling of incidence and survival in a dynamic
population environment. For example, clinical covariates being equal, the model
generally would provide different survival estimates for subjects from low and high
PSA utilization areas.

Since this regression framework is applied to population data, there is no need to
perform additional calibration of model predictions after parameter estimation. All
adjustments of the model are explicitly built into the fitting procedure. In case the fit is
unsatisfactory, this framework naturally leads the researcher or policymaker to directly
examine model assumptions and parameter values. Thus the framework is flexible,
allowing reviewers, researchers outside the development team, and policymakers to
analyze and evaluate the model, creating an environment conducive to further model
improvement.

Analytic procedures for estimation and prediction.
A second distinctive feature of our model is that it is analytic in all its components. We
do not use simulation or stochastic approximation either to fit the model or to predict
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from it. This fact has two consequences, one pertaining to ease of model fitting and
prediction, one pertaining to model interpretation.

A fit or prediction run for our model takes a few minutes on a standard PC, much less
time than if we relied on simulation. This results in a quick feedback and consequently
allows interactive dialog between the model and the user. This feature is particularly
important for providing a policy maker with a tool to quickly evaluate a number of
cancer control hypotheses in an interactive environment. We have already developed a
working prototype software package (SCANS, Self-Consistency Analysis of
Surveillance) for Windows.

In addition to the practical advantage of speed, the analytic nature of our model means
that it is transparent. The parameters can be directly interpreted in terms of processes
of interest, so that the model itself is in no way a "black box."

Within-stage shift.
It is customary to explain survival and mortality differences associated with PSA
screening by shifts in stage and grade of the cancer associated with the lead time
between screen diagnosis and the time at which an individual would have been
diagnosed clinically. Under the current model, however, we find evidence of a survival
shift within stage, associated with PSA dissemination. For more information, see
Within Stage Shift.

Additional distinctive features of this model.

We provide confidence intervals and tests of statistical hypotheses for all estimated
model parameters. Thus, the user has an idea as to the significance of model findings.

While the model is applied to prostate cancer, its structure is general and open to
immediate application to other diseases.

MODEL DESCRIPTION
The model provides a means by which parameters may be estimated that enable us to
explain and predict trends in incidence, survival and mortality. As suggested in the
Background section above, the model is probabilistic -- yielding p-values and
confidence intervals -- and is accompanied by procedures that permit estimation from
the same kind of data that we are seeking to predict and explain, namely, large
population databases.

Model Assumptions
Please see Assumption Overview for the assumptions on which the model is based.

Model Inputs
Please see Parameter Overview for a list of model inputs.

Model Outputs
The model yields estimates of a set of parameters that together constitute a
comprehensive model for prostate cancer incidence, survival, and mortality.
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These parameters govern such basic characteristics of the model as age at tumor onset,
sojourn time, lead time, overdiagnosis, delay time, sensitivity of the PSA test, and the
correlation between the age at tumor onset and the sojourn time. From these basic
characteristics follow estimates of incidence a function of calendar year, age, stage, and
grade; survival as a function of stage, grade, and delay time; and mortality by calendar
year and age. From these parameters we finally derive estimates of the effect of PSA
screening on prostate cancer incidence and mortality.

For more information, see Output Overview.

Model Limitations
Since the data are observational, we do not have the benefit of complete elimination of
confounders, as is possible in a well-conducted clinical trial. The urgent need to gain
understanding of the processes, however, and the long follow-up time required by a
screening trial, do not afford us the luxury of waiting for experimental results.

Because the model is based on past data, its generalizability to the future may be
limited.

The current version of the model does not explicitly describe PSA growth.

CONTRIBUTORS
We gratefully acknowledge the collaboration of the following individuals.

Dr. Ray Merrill of the Department of Health Sciences, Brigham Young University,
helped in model building, interpretation and prediction of national prostate cancer
trends.

Dr. Marco Zaider, Head of Brachytherapy at the Memorial Sloan-Kettering Cancer
Center, brought his expertise in prostate cancer treatment to the project. He assisted us
in analyzing and interpreting clinical data, providing a link between screening
strategies and prostate cancer post-treatment survival.

Dr. Gilda Garibotti worked on computer implementation of the profile information
matrix methodology in the survival analysis module. She provided advice on software
development and implementation of survival analysis machinery in the population
model.

Dr. Aniko Szabo provided help on software development and implementation of
methods and population models. She especially provided advice on the integration of
the model software into the population software shell, and helped in testing computer
code that implements extended population models.

REFERENCES:
1 Stewart, S.L., King, J.B., Thompson, T.D., Friedman, C., Wingo, P.A. “Cancer

mortality surveillance--United States, 1990-2000” in MMWR Surveillance
Summary 2004; 53: 3: 1-108

2 Potosky, A.L., Feuer, E.J. , Levin, D.L. “Impact of screening on incidence and
mortality of prostate cancer in the United States” in Epidemiological Review
2001; 23: 1: 181-186
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3 Hsing, A.W., Devesa, S.S. “Trends and patterns of prostate cancer: What do they
suggest?” in Epidemiologic Reviews 2001; 23: : 3-13
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ASSUMPTION OVERVIEW

SUMMARY
In this section we summarize the main assumptions on which the model is based.

BACKGROUND
Researchers generally agree that prostate cancer is the result of an irreversible
transition of the disease through three consecutive stages: the disease free stage, the
pre-clinical stage and the clinical stage. This three-stage model entails the following
potential time points in an individual's life: birth, onset of prostate cancer, time of
clinical diagnosis, time of death due to prostate cancer, and alternatively the time of
death due to a competing risk.

Although this model may be accurate as far as it goes, it does not capture the processes
currently affecting incidence, survival and mortality. The dissemination of TURP and,
more drastically, the dissemination of PSA testing have made the picture more
complicated, because both TURP and the PSA test can advance the diagnosis of
prostate cancer.

In addition, it has customarily been believed that stage shift is the only reasonable
explanation for any benefit derived from early detection. We do not make this
assumption, and in fact have found evidence to the contrary (see Introduce Within
Stage Shift).

For both these reasons, a more complex set of assumptions must be spelled out.

ASSUMPTION LISTING
Tumor onset (See Age At Tumor Onset for details.)

• The baseline hazard of tumor onset may depend on age.

• The hazard of tumor onset may depend on calendar year.

• The effect of calendar year on the hazard of tumor onset is multiplicative.

Sojourn Time (See Sojourn Time Distribution for details.)

• Baseline Sojourn Time may depend on age.

• The hazard function associated with baseline Sojourn Time may include a
multiplicative trend in calendar time.

• Sojourn Time may depend on age at tumor onset.

• Given the time of tumor onset, Sojourn Time does not depend on the cancer
screening process.

Delay Time. The distribution of the duration of the latent_disease_stage is an average
over random patterns of all possible modes by which the disease can be detected. (See
Incidence Model for details.) These include

• Clinical diagnosis through symptoms
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• PSA screening

• Transurethral resection of the prostate (TURP).

Screening tests occur randomly in time, subject to the following assumptions (see
PSAscreening Model for details):

• Age at first PSA test has a distribution (alternatively, hazard function) that
depends both on age and calendar time.

• The times between consecutive PSA tests occur as a non-homogeneous Poisson
process, with an intensity that depends on age and calendar year.

• The sensitivity of the screening test is an increasing function of time since tumor
onset.

Survival time after diagnosis follows a semiparametric regression model. (See
Survival Component for details.)

Mortality in the population can be adequately modeled by combining information
from the incidence and survival models. (See Mortality Model for details.)

Within-Stage Differences in Prognosis. We allow the possibility that stage and grade
at diagnosis are not the only variables associated with a patient's prognosis for
survival. (See Introduce Within Stage Shift.)
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PARAMETER OVERVIEW

SUMMARY
This document lists and defines the inputs to the modeling algorithm.

BACKGROUND
The parameters discussed on this page are parameters of a model, not of a population.
Thus, in this context, the term "parameter" has an entirely different meaning from the
classical statistical use of the term.

In classical statistics, a parameter is a number or set of numbers that characterize a
population. Typically, we estimate parameters by drawing a sample from the
population, measuring a variable or set of variables on each individual in that sample,
and using these measurements (i.e., using a set of data) as input to an estimation
algorithm. The estimation algorithm produces parameter estimates as output. These
may be point estimates, interval estimates, p-values, or higher-dimensional objects
such as densities or cumulative distribution functions.

In the current context, however, "parameter" does not refer to a characteristic of the
population but rather to any input to the modeling algorithm. Thus, even a set of
measurements made on each individual in a sample drawn from the population are
considered "parameters" if they are used as input to the modeling algorithm.

PARAMETER LISTING OVERVIEW
The inputs to the model (also called the "model parameters," as explained in the
Background section of this page) consist of population data as well as "given"
parameters and distributions provided by the National Cancer Institute (NCI). These
include:

• The distribution of PSA utilization in the population. This distribution is based on
an algorithm that can be used to simulate life histories of the times that individual
men undergo PSA tests. For more information see base Case PSA.

• Surveillance, Epidemiology and End Results (SEER) data on every individual
diagnosed with prostate cancer in nine areas of the United States (San Francisco-
Oakland, Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, and
Atlanta), more than 350,000 cases (SEER_Medicare). The data include tumor
characteristics as well as standard follow-up and outcome variables. In particular,
for each age (over 50) and each year the number of new prostate cancer cases

is derived and "fed" to the model. For details see Likelihood In The
Incidence Model.

• Population count files belonging to the same areas from which the prostate cancer
case data were obtained. From this source the number of people at risk for prostate
cancer for each age and each year is derived, , and "fed" into the model.
For details see Likelihood In The Incidence Model.

• Age distribution in the U.S. population in the year 2000 for men over 50.

• Risk of death from other causes, derived from the Human Mortality Database1.
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1 Wilmoth, John R. (Director), Shkolnikov, Vladimir Shkolnikov (Co-Director),
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Parameter Overview
References:

Page 12 of 85 All material © Copyright 2003-2008 CISNET



COMPONENT OVERVIEW

SUMMARY
This document outlines the analytic components of which the model is constructed.

OVERVIEW
The model is composed of three distinct components by which predictions and
estimates are made based on population data.

The Incidence Component takes population data as input and yields estimates and
predictions of prostate cancer incidence by calendar year and age. In addition it yields
predictions both in the presence and in the absence of PSA testing, thereby yielding an
estimate of the difference in prostate cancer incidence that is due to the presence of
PSA testing.

The Survival Component also takes population data as input. It yields a model for the
relationship between a set of covariates (including age, year of diagnosis, cancer stage
and tumor grade) and a man's survival prognosis.

The Mortality Component combines the Incidence Component and the Survival
Component. It yields estimates and predictions of prostate cancer mortality by
calendar year, age, and presence or absence of PSA testing. Thus, similar to the
Incidence Component, the Mortality Component yields an estimate of the difference in
prostate cancer mortality that is due to the presence of PSA testing.

COMPONENT LISTING
Incidence Component
Survival Component
Mortality Component
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OUTPUT OVERVIEW

SUMMARY
This page lists and describes the statistics computed by the model, the parameters for
which these statistics serve as estimates, and the predictions available from the model.

OVERVIEW
The model yields estimates of a set of parameters (some one-dimensional, some multi-
or high-dimensional) that together constitute a comprehensive model for prostate
cancer incidence, survival, and mortality.

OUTPUT LISTING

• Prostate cancer incidence as a function of calendar year, age, and presence or
absence of PSA testing. (See Incidence Figure.)

• Survival as a function of calendar year, age, stage, grade, and screening schedule.
(See Survival Component.)

• Mortality by calendar year, age, and presence or absence of PSA testing. (See
Mortality Component.)

• Mean lead time as a function of birth cohort. (See define Lead Time and Results
Overdiagnosis Lead Time.)

• Overdiagnosis as a function of birth cohort. (See define Overdiagnosis and Results
Overdiagnosis Lead Time.)

• Delay time as a function of calendar year and age, with and without PSA testing.
(The latter is a counterfactual scenario; see define Delay Time and Mean Posterior
Delay Time Marginal Incidence Model.)

• Relationship between delay time and survival. (See Within Stage Shift By Delay
Time.) Note that this estimate entails differences in survival (or prognosis)
associated with differences in screening schedule, even after adjustment has been
made for stage and grade of cancer. We call this phenomenon within-stage shift.
To our knowledge this phenomenon has not been discovered or quantified by any
other research group.

• Estimates of the differences in incidence and mortality that are due to PSA
screening. These estimates are based on a scenario in which incidence and
mortality are estimated in the counterfactual case of no PSA screening. (See results
Age Adjusted Incidence Mortality.)

• Parameters governing the distribution of baseline sojourn time. (See Incidence
Model, Analysis Of Population Data and Table_1.)

• Parameters governing age at tumor onset. (See Incidence Model, Analysis Of
Population Data, and Table_1.)

• Sensitivity of the PSA test. This was estimated at 100% by the model, but can be set
to zero to predict what incidence would be in the absence of PSA. (See Modeling
Cancer Detection Through Screening and Analysis Of Population Data.)

• Correlation between age at onset and sojourn time. (This was found to be
negligible, and removed from the model; see Analysis Of Population Data).
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RESULTS OVERVIEW

SUMMARY
This page lists discoveries that have been made through the current modeling effort.

OVERVIEW
The model constitutes a framework for analysis of population databases. Within this
framework, and by means of its estimation procedures, researchers obtain estimates of
parameters that matter in the quest to understand the causes and processes of change
in prostate cancer incidence, survival, and mortality. These parameters represent
factors that either cause, or are associated with, differences in the outcomes that
researchers and the public ultimately care about: survival prognosis for those
diagnosed with prostate cancer, and mortality in the population due to prostate cancer.

RESULTS LIST

• resultsAgeAdjustedIncidenceMortality, and consequently

• Estimation of the difference in incidence that is due to PSA testing.

• resultsAgeAdjustedIncidenceMortality, and consequently

• Estimation of the difference in mortality that is due to PSA testing.
For more information on results regarding incidence and mortality, see results
Age Adjusted Incidence Mortality.

• Estimation of Delay Time without using survival data. This represents an
independent significant prognostic factor for post-treatment survival, particularly
for cancers in the localized-regional stage. See Mean Posterior Delay Time
Marginal Incidence Model.

• Identification of differences in survival associated with differences in Delay Time.
The changes in survival associated with early detection have been customarily
modeled by stage shift. We have found, however, that, even after stage has been
accounted for, differences in delay time (the time from onset of cancer until
detection) are associated with differences in survival. See Within Stage Shift By
Delay Time.

• Publications accepted or submitted (click on the link for a list).
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FIGURE_1

Figure_1. Prostate cancer incidence and mortality rates by year of diagnosis age-adjusted to
US population in year 2000. Data from the Surveillance, Epidemiology and End Results
(SEER) database, National Cancer Institute.
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PARAMETER
In this model profile, the term "parameter" is used in the classical statistical sense. In
this sense a parameter is a number or set of numbers that characterize a population. A
primary object of classical statistics is to use data, also referred to as a sample, to
estimate the parameters of a population. This sense of the term is entirely different
from the sense referred to by the phrase Parameter Overview. Please see the
Background section of that document for an explanation of the difference between the
two senses of the word.

For information on the particular parameters estimated by the model, see Output
Overview.
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WITHIN STAGE SHIFT
The effects of over diagnosis, Length Bias and Lead Time result in remarkable changes
in the meaning of clinical covariates at diagnosis. With the introduction of screening,
however, the prognostic value of such covariates is modified. The prognosis for cases
diagnosed in the screening era is markedly different as compared to cancer cases from
unscreened populations. This effect remains unexplained even when survival is
adjusted for stage and grade (Figure_2). As PSA screening is intensified with the
dissemination of the test in the U.S. population, survival in localized stage is
improving while survival in distant stage is worsening as discussed above. A similar
effect in the localized stage might be found before PSA was introduced, in association
with early detection through TURPs. In contrast to the situation in a clinical trial,
straightforward conditioning on clinical covariates in the analysis of population data
may be misleading, and special care is needed to adjust for screening patterns in the
population. For the same reason, the results of clinical trials are not immediately
generalizable to the population setting.
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DEFINE ONSET
Onset is defined as the beginning of prostate cancer in an individual. Note that the
time of onset for an individual cannot be directly determined.
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DEFINE TURP
Transurethral resection of the prostate (TURP) is a surgical procedure performed to
treat benign prostate hyperplasia (BPH) and urinary obstruction symptoms.
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INTRODUCE WITHIN STAGE SHIFT
See Delay_Time_Approach for modeling of within-stage shift.
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AGE AT TUMOR ONSET
Age at tumor onset

We use a Weibull distribution for the baseline age at tumor onset. Its baseline hazard
function is given by

where is the age past 50. In the above expression Weibull distribution is
parameterized through the mean and the shape parameter related to the
coefficient of variation

Included in the model is a trend function that depends on calendar time. This
function exerts a multiplicative effect on the baseline hazard so that the hazard of
tumor onset depends on age and birth cohort

The trend is used to model possible changes in the pattern of the disease onset with
calendar time due to unspecified factors such as changes in diet, environment and
biology of the disease. Note that it is hardly possible to give a biological definition for
the tumor onset. From the modelling prospective, tumor onset represents the earliest
point in time where cancer could be detected by screening. For this reason changes in
detection technology, practice of biopsies for the disease following a positive screens
and other diagnostics management issues may also affect the definition. Changes in
such practices that are not modelled in a mechanistic fashion are thought of as part of
the trend function. We used truncated linear trend functions in data analysis.

(This is extracted from an early draft of1.)

REFERENCES:
1 Tsodikov, A., Szabo, A., Wegelin, J. “A population model of prostate cancer

incidence” in Statistics in Medicine 2006; 25: 16: 2846-2866
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DEFINE SOJOURN TIME
Sojourn time is defined as the potential (other risks removed) time from tumor onset
to its clinical diagnosis. Thus it is the duration of the preclinical stage in the absence of
screening. We speak of the sojourn time distribution even for individuals who receive
screenings. In this way we model the competing risks of clinical and screening
diagnosis.
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SOJOURN TIME DISTRIBUTION
The sojourn time distribution.
Sojourn time is defined as the potential (other risks removed) time from tumor onset to
its clinical diagnosis. A Weibull distribution with mean and shape parameter
is used to model the baseline sojourn time hazard. Two effects can be imposed on the
baseline sojourn time distribution:

• Age. Sojourn time may be affected by age for various reasons. Tumor growth
biology may depend on the age of the person. Also, tumors developing at a
younger age may represent a special subtype that can have different progression
characteristics. To model age dependency, the mean sojourn time is regressed on
the age at tumor onset as , where the parameter models the
correlation between the sojourn time and the onset time.

• Secular trend. Sojourn time may be affected by changes in the practice of cancer
detection other than the studied modality of screening. Most notably, before PSA
was introduced, prostate cancer was often detected as a result of surgery

(Transurethral Resection of the Prostate, TURP) for benign prostate disorders1.
Other changes in prostate cancer awareness in the population and detection
practices may have contributed to a trend of increasing incidence observed before
PSA was introduced. These trends in calendar time are modelled using a
multiplicative trend function acting on the baseline sojourn time hazard.

We have the sojourn time hazard in the form

where is the birth year, is age (past 50) at tumor onset, is time since tumor onset,
and is Weibull hazard with shape parameter and mean
.

REFERENCES:
1 Merrill, R.M., Feuer, E. J., Warren, J. L. , Schussler, N. , Stephensons, R. A. “Role of

transurethral resection of the prostate in population-based prostate cancer
incidence rates” in American Journal of Epidemiology 1999; 150: 8: 848-860
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DEFINE DELAY TIME
Delay time is defined as the duration of the latent_disease_stage, i.e., the time from
onset until detection of cancer by any means, including PSA screening or clinical
detection.
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DEFINE LATENT DISEASE STAGE
The latent disease stage is defined as the time when an individual has cancer but the
cancer has not yet been detected by any means.
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INCIDENCE MODEL

INCIDENCE MODEL
We use the classical three-stage model of the natural history of a chronic disease1.
Prostate cancer is a result of an irreversible transition of the disease through three
consecutive stages: disease free stage, pre-clinical stage and clinical stage. The time
spent in disease-free stage is characterized by the age (a random variable) at onset of
the disease. In the pre-clinical stage disease is asymptomatic and can be detected by a
screening test. The duration of the preclinical stage in the absence of screening (a
random variable) is termed the sojourn time. If undetected by screening, the disease
can either reach the clinical stage or, alternatively, the event of clinical diagnosis is
precluded by a competing risk other than the disease of interest.

The distribution of any random duration can be specified by one of the following
functions: a hazard function (h.f., or ), a survival function (s.f., ), a distribution
function (d.f., ), or a probability density function (p.d.f., ). Dependent on the
situation, we will use the most convenient representation. Denote age by , calendar
year by , year of birth by , and time since tumor onset by . We will follow the above
notation unless noted otherwise. Prostate cancer incidence by age and year can
be written as where is the h.f. for cancer diagnosis for the -birth
cohort. Clearly,

The functions and are in fact represented by a fairly complex mixture model. It is
clear that cancer incidence is a convolution of two generally dependent survival times:
age at tumor onset and duration of the latent disease stage .

where is a conditional p.d.f. of , and is the p.d.f. of . Generally,
is an average over random patterns of screening operating in the population. It is clear
that is a result of two dependent competing risks: the one associated with natural
clinical diagnosis through symptoms and the one associated with detection through
screening. Dependency between the two risks is a consequence of natural detection
and screen-based detection risks sharing the same disease development process in the
subject. This dependency is modelled through the concept of shared mixed effect

(frailty) Hougaard2, represented by Y . Conditional independence of potential risks of
natural and screen-based detection, given Y gives

where is the s.f. of time to clinical diagnosis (CDx) in the absence of screening (the
sojourn time), and is the s.f. of the potential time to screen-based diagnosis (SDx).
Note, that in our model corresponds to a continuous distribution as it is
represented as a continuous mixture over random screening schedules in the
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population. Since incidence of prostate cancer before the age of 50 is negligible, we will
associate the birth year with the year in which the man turns 50. Weibull distribution
with mean and the shape parameter is used for the baseline age at tumor onset.
Weibull distribution with mean and shape parameter is used to model the
baseline sojourn time hazard . Two effects are imposed on the baseline sojourn
time distribution, age dependence and a secular trend. To model age dependency, the
mean sojourn time is regressed on the age at tumor onset y as , where
the parameter , models correlation between the sojourn time and the onset time.
Secular trend models alterations in the practice of cancer detection other than the
studied modality of screening. Most notably, in the pre-PSA era, many prostate cancers
were incidentally detected through TURP
3. Secular trend is introduced as a multiplicative effect

REFERENCES:
1 Zelen, M., Feinleib, M. “On the theory of screening for chronic diseases” in

Biometrika 1969; 56: : 601-614
2 Hougaard, P. “Frailty models for survival data” in Lifetime Data Analysis 1996; 1: :

255–274
3 Merrill, R.M., Feuer, E. J., Warren, J. L. , Schussler, N. , Stephensons, R. A. “Role of

transurethral resection of the prostate in population-based prostate cancer
incidence rates” in American Journal of Epidemiology 1999; 150: 8: 848-860
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PSASCREENING MODEL
The PSA screening model

The National Cancer Institute's Statistical Research and Applications Branch has
devefloped a simulator for PSA schedules for arbitrary birth cohorts in the 1916--2000

box. This simulator uses data from the National Health Interview Survey (NHIS)1 and

Surveillance, Epidemiology and End Results (SEER) -- Medicare linked database2. To
extrapolate the data beyond the original age--year box, generalized additive models (R
procedure {\em gam}) were used to smooth the data. A logistic regression model was
used for smoothing with the additive main effects of age and calendar year

represented by thin plate regression splines3. No interaction smooth terms were
specified. Shown in Figure_3b, below, is an estimate for the risks of first and
secondary PSA tests.

It is clear from the figure that the risk of secondary PSA test is several times higher the
one for the first test. This observation prompted the development of the two-stage
model for screening based detection described in Modeling Cancer Detection Through

Screening-B and4. Frequency of PSA testing by age increases initially as the man enters
the risk zone for prostate cancer. However for the older ages a decreasing pattern is
observed perhaps because of limited residual life expectancy and associated
diminishing relevance of detection of prostate cancer. Dissemination by calendar year
is different for the first and secondary tests. In men who have been screened at least
once the frequency increases as PSA is introduced into practice and the surface settles
at stable values in the nineties. The risk of getting the first test by calendar year shows
a spike in early nineties and settles at a lower level later showing a decreasing pattern
in the late nineties. This phenomenon deserves further study. The effect could be a
consequence of heterogeneity in people's acceptance of PSA testing. The group of men
showing compliance for PSA testing is dissipating with time as such men get tested
and leave the set of men "at risk" for the first test. Another explanation might be that
the recent decline in the frequency of new PSA tests is associated with a dissemination
of knowledge of various controversial issues surrounding screening for and treatment
of prostate cancer.

REFERENCES:
1 National Center for Health Statistics “National Health Interview Survey (NHIS).”

2004;
2 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -

Medicare linked database” 2002;
3 Wood, S. “Thin plate regression splines” in Journal of the Royal Statistical Society

Series B 2003; 65: : 95–114
4 Tsodikov, A., Szabo, A., Wegelin, J. “A population model of prostate cancer

incidence” in Statistics in Medicine 2006; 25: 16: 2846-2866
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SURVIVAL COMPONENT

SUMMARY
This document describes the survival component of the model.

OVERVIEW
The survival component is an analytic model that describes the relationship between a
set of covariates and a survival curve (alternatively a hazard function, a distribution of
time to failure, or a density).

DETAIL
The model yields differing survival curves depending on the following covariates.

• stage of cancer

• tumor grade

• calendar year of diagnosis

• age of patient

• therapy (the integration of this covariate into the model remains as future work.)

Here we present the main results. These results permit us to use composition to build
flexible semiparametric survival models (nonlinear transformation models) and use
them for estimation and hypothesis testing.

Nonlinear transformation models
Let be a parametrically specified distribution function with the --domain of

. Let be a nonparametrically specified baseline survival function. A
semiparametric regression survival model is called a Nonlinear Transformation Model
if its survival function can be represented as a composition

The NTM class and associated estimation procedures were developed by Tsodikov1.
The key requirement that ensures monotonicity and convergence of the estimation
algorithms (see Estimation Algorithm) is that of nondecreasing , where
where , , . Using frailty models
analogy, can be interpreted as a surrogate of the posterior risk for a subject
observed with an event at time , where =0 if right censored, =1 if failed.
Model building by composition
If and are two different NT models with predictors , and , respectively, then

is a new semiparametric model with two predictors and . The fact that NTM--
generating functions are all defined on and have the range in the same
interval allows us to compose as complex a hierarchical model as needed. Moreover,
we proved that operation of composition preserves the key property of nondecreasing

observed in frailty models \citep{tsomodelbuilding}. We also derived a chain rule
that allows us to specify for the compound model based on --functions of the
submodels
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As we will see in the next section, knowledge of is all that is needed to specify an
estimation procedure.

Estimation algorithm
Let be a set of times, arranged in increasing order, . Associated
with each is a set of subjects at risk, with covariates . For any function
, let , . The following method (QEM) is used to obtain
the profile likelihood.

where and are sequences of functions generated by the self-consistency
equation (Equation QEM), is the number of failures at , and is a vector of
regression coefficients.

It can be shown that if is nondecreasing, each update of using the self-consistency
equation (Equation QEM) strictly improves the likelihood, given . This guarantees
convergence of the sequence of likelihood values to the profile likelihood of

, and of the sequence to , the fixed point of (\ref{qem}), under fairly general
conditions.

Under a frailty model, the procedure (Equation QEM) is an EM algorithm based on
imputation of a missing predictor by its conditional expectation, given observed data,
represented by . Under an NT model, the procedure works as a Quasi-EM
algorithm without the missing-data interpretation.

Profile information matrix
To obtain confidence intervals and tests of statistical hypotheses for regression
coefficients, we developed a solution for the exact observed profile information matrix

of 2. As the number of parameters of a semiparametric model is potentially unlimited,
obtaining the inverse of the full information matrix becomes computationally
prohibitive, and a profile information matrix would be very useful. The profile
information matrix can be expressed as

where and

for any two vectors and , where is a log-likelihood and is the fixed point of the
self-consistency equation. Notice that has dimension , with ,
therefore only a small matrix needs to be inverted in order to get an estimator of the
covariance matrix of regression coefficients. The downside of (\ref{ipr1}) is that since

is defined implicitly, so is the potentially large Jacobian matrix .
Therefore, the Jacobian is generally unavailable in a closed form. In the NTM case the
problem reduces to solving a system of linear equations , where
represents a column--vector of the Jacobian, is an diagonal matrix with
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diagonal elements , , is a matrix, , ,
are real numbers, and be an -dimensional vector. The main result used to

obtain is as follows. Let the functions , be defined recursively
as , ,

. Now, let be the function given by . The solution to
the system of equations is the -dimensional vector ,
where .

RELEVANT ASSUMPTIONS
See Assumption Overview.

RELEVANT PARAMETERS
Recall that the term "parameter," in the language of this model profile environment,
actually refers to a model input.

The inputs to the survival model consist of data from the SEER (Surveillance,
Epidemiology and End Results) database, which includes approximately 350,000 men

diagnosed with cancer3. More information on these data may be found by clicking the
Details link in the footnote.

Each man's covariates (age, stage, grade, etc.) enter individually into the survival
model. In this, this survival model differs from the incidence model (see Incidence
Component).

RELEVANT COMPONENTS
The components of the survival model are results that allow us to build flexible
semiparametric survival models and use them for estimation and hypothesis testing.
Many of these results are new discoveries, developed under this project. Details may
be seen above, on this page.

DEPENDENT OUTPUTS
Mortality Component

RELEVANT RESULTS
Methods. Advances were made in statistical methods in the development of this
component of the model. For more information, see the Relevant Components section
of this document.

Parameter estimates and prediction. The output of the Survival Component is
combined with the output of Incidence Component and used as input to the Mortality
Component, leading to predicted mortality and an estimate of the difference in
mortality that is due to the introduction of PSA testing. See results Age Adjusted
Incidence Mortality and Analysis Of Population Data.

REFERENCES:
1 Tsodikov, Alex “Semiparametric models: a generalized self-consistency approach” in

Journal of the Royal Statistical Society, Series B 2003; 65: : 759–774
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2 Tsodikov, A., Garibotti, G. “Profile information matrix for nonlinear transformation
models” in Lifetime Data Analysis 2007; 13: 1: 139-159

3 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -
Medicare linked database” 2002;
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MORTALITY MODEL

THE MORTALITY MODEL
Let be the vector of clinical covariates observed at diagnosis. The results of Survival
Component allow us to study different survival models (s.f.), where is
the survival time post-diagnosis, is age at diagnosis, is calendar year of diagnosis,
and represents clinical covariates. We found that the proportional hazards model
does not provide a good fit for the data by stage and grade. The list of adequate

survival models for prostate cancer includes the PHPH cure model1,2 and the

proportional odds (PO) model4. We prefer the PO model with one linear predictor over
the PHPH cure model with two predictors by the AIC model selection criterion. A test
for the PO assumption vs. the PH assumption using the Gamma frailty model with
covariates in shape and scale parameters of the frailty distribution can be found in

Tsodikov2004. Confidence intervals for odds ratios of stage can be found in5.

In Incidence Model we presented a marginal model for cancer incidence by age and
year of diagnosis . The marginal p.d.f. for the -cohort, resulting from
this model can be partitioned into --specific fractions using a regression of on age
and year, , so that .

In practice, to specify we use a categorical effect of and define as a categorical
prognostic variable based on stage and grade. Cutpoints on PSA value and its velocity
at diagnosis can be used to extend . The period categorical variable associated with
serves as a surrogate of PSA utilization affecting --shift and within--stage shift of
survival with the introduction of PSA. We consider this approach preliminary in that it
only pertains to the actually observed utilization pattern and does not easily generalize
to hypothetical PSA impact scenarios (unlike the incidence model). As part of model
improvement in this competing continuation application we plan to provide a more
sophisticated link between the incidence and survival models that is necessary to
address the specific aims of this project.

Now, mortality in year at the age of , , where
and , is derived from the prostate cancer

specific survival function counted out from birth, represented by the following
convolution:

REFERENCES:
1 Tsodikov, A. “Semiparametric models of long- and short-term survival: An

application to the analysis of breast cancer survival in utah by age and stage” in
Statistics in Medicine 2002; 21: : 895–920

2 Tsodikov, A., Ibrahim, J.G., Yakovlev, A.Y. “Estimating cure rates from survival
data: An alternative to two-component mixture models” in Journal of the
American Statistical Association 2003; 98: : 1063–1078

3 Tsodikov, Alex “Semiparametric models: a generalized self-consistency approach” in
Journal of the Royal Statistical Society, Series B 2003; 65: : 759–774

4 Tsodikov, A. “Using composition to build semiparametric survival models” in
Statistical Modelling 2006; Submitted:

5 Tsodikov, A., Garibotti, G. “Profile information matrix for nonlinear transformation
models” in Lifetime Data Analysis 2007; 13: 1: 139-159
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BASE CASE PSA
The base case PSA simulation program can be used to simulate life histories of the
times that individual men undergo PSA tests. The simulator is based on data from the

National Health Interview Survey1 and the Surveillance, Epidemiology and End

Results (SEER) -linked database2. The simulation is based on two submodels for the
"risk" of PSA test, both of which depend on age and calendar year. The first submodel
is a survival model for the time to first PSA test among men who have not yet had a
test. The second submodel is a non-homogeneous Poisson process model for the
schedule of subsequent PSA tests in men who have already had at least one PSA test.
For further information, see figure First PSAtest Secondary PSAtest.

REFERENCES:
1 National Center for Health Statistics “National Health Interview Survey (NHIS).”

2004;
2 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -

Medicare linked database” 2002;
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SEER_MEDICARE

REFERENCE
National Cancer Institute (2002), "Surveillance Epidemiology and End
Results (SEER) - Medicare linked database"

URL:
http://healthservices.cancer.gov/seermedicare/

NOTES AND DISCUSSION

The SEER data used in the current study consist of two parts:

• Population data: an age-by-year table with a count in each cell of the number of
men at risk for prostate cancer

• Survival data: one row for each patient, with several variables such as age at
diagnosis, stage, grade, and outcome

The data are available only from the following locations: San Francisco-Oakland,
Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, and Atlanta. They
include all prostate cancer cases diagnosed in these regions, approximately 350,000
men.
CategoryReferences
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LIKELIHOOD IN THE INCIDENCE
MODEL
LIKELIHOOD IN THE INCIDENCE MODEL
Observed data for the incidence model include a count of people at risk of
cancer and a count of cancer cases by age and year. The conditional likelihood of
the data is built as a product of conditional probabilities of cancer detection given that
the subject is in the risk set for each combination from the observed box. Except for
terms that do not depend on the model parameters, the likelihood takes the form

Note that the same likelihood would result if we assumed that is Poisson distributed
with expectation and that represent independent random variables for
different pairs (which is not the case in Equation Likelihood). Maximum
likelihood inference is used to obtain point estimates and confidence intervals for the
model parameters entering . Maximization of the likelihood can be regarded as
minimizing a certain distance between the empirical incidence and its model-
based counterpart .
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HUMAN MORTALITY DATABASE

REFERENCE
Wilmoth, John R. (Director),Shkolnikov, Vladimir Shkolnikov (Co-
Director), (2003), "Human Mortality Database (HMD)."

URL:
http://www.mortality.org/

NOTES AND DISCUSSION
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INCIDENCE COMPONENT

SUMMARY
This document summarizes the incidence component of the model.

OVERVIEW
The incidence component is an analytic model for the time until prostate cancer
diagnosis of a randomly-selected man from the population at risk. This model is
expressed in terms familiar from survival analysis, and thus may be expressed as a
hazard function, a density, a cumulative distribution function, or a survival function. A
likelihood-based estimation procedure is part of this component.

DETAIL
The incidence model uses population data to estimate parameters that characterize
prostate cancer incidence as a function of age and calendar year.

RELEVANT ASSUMPTIONS
Please see Assumption Overview.

RELEVANT PARAMETERS
Recall that the term "parameter," in the language of this model profile environment,
actually refers to a model input. The inputs to the incidence model consist of data and
of parameters (in the statistical sense of the word) belonging to a model that has been
specified and estimated independently.

The incidence model currently uses data from nine areas of the United States: San
Francisco-Oakland, Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah,
and Atlanta. Before being used in the estimation procedure, the data are summarized
by age ( ) and calender year ( ).
The particular variables summarized by age and calendar year, and used as input to
the model, are:

• The number of men at risk for prostate cancer, for each age and calendar
year .

• The number of new prostate cancer cases, by age and calendar year ,
obtained by computing summaries from the SEER (Surveillance, Epidemiology

and End Results) database1.

In addition, the estimation procedure uses a prior estimate of the distribution of PSA
utilization in the population. This distribution is based on an algorithm that can be
used to simulate life histories of the times that individual men undergo PSA tests. For
more information see base Case PSA.

RELEVANT COMPONENTS

• Distribution of time until tumor onset (see Incidence Model)

• Duration of the latent disease stage (also called delay time), which is further
broken down into the following competing risks:
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◦ Risk of clinical diagnosis (see Incidence Model)

◦ Risk of screen-based diagnosis (see Modeling Cancer Detection Through
Screening)

(Other means of detection, such as TURP, are not currrently included in the
model.)

• Likelihood and estimation algorithm (see Likelihood In The Incidence Model)

DEPENDENT OUTPUTS
Mortality Component

RELEVANT RESULTS

• Predictions of incidence with and without PSA testing (see results Age Adjusted
Incidence Mortality), and consequently

• Estimation of the difference in incidence that is due to PSA testing.

REFERENCES:
1 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -

Medicare linked database” 2002;
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MORTALITY COMPONENT

SUMMARY
This document describes the mortality component of the model.

OVERVIEW
The Mortality Component yields estimates of mortality by calendar year, age, and
presence or absence of PSA testing.

DETAIL
See Mortality Model.

RELEVANT ASSUMPTIONS
See Assumption Overview.

RELEVANT PARAMETERS
Recall that the term "parameter," in the language of this model profile environment,
actually refers to a model input, not a parameter in the classical statistical sense.

The inputs to this component are the outputs of the Incidence Component and Survival
Component.

This component does not use population mortality data as input.

RELEVANT COMPONENTS

DEPENDENT OUTPUTS

RELEVANT RESULTS

• Predictions of prostate cancer-specific mortality with and without PSA testing (see
results Age Adjusted Incidence Mortality)

and consequently

• Estimation of the difference in mortality that is due to PSA testing.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

University of Michigan
Mortality Component

Page 42 of 85 All material © Copyright 2003-2008 CISNET



INCIDENCE FIGURE

Incidence Figure. Prostate cancer incidence (rate per person). Observed incidence of prostate
cancer is displayed on the left. This is a histogram empirical estimate obtained by dividing
incident cancer cases by the population at risk, for each age and each calendar year. Expected
incidence is displayed on the right, also by age and calendar year, as predicted by the model.
The model captures the basic pattern of prostate cancer incidence. The spike occurring with
the introduction of PSA testing gets more pronounced with increasing age, except in very old
men. The decrease in older men is a consequence of the fact that latent prevalence accumulates
with age.
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DEFINE LEAD TIME
Lead time refers to the amount by which detection of prostate cancer is advanced due
to PSA screening. It adds to the observed survival time even if early detection and
treatment were of no benefit. The lead-time effect targets patients who would still be
detected later without screening. This effect could result in apparently improved short-
term survival even if there were no mortality benefit.
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RESULTS OVERDIAGNOSIS LEAD
TIME

Estimates of lead time and overdiagnosis reveal the potential natural history of the
disease and of population screening exposure over the lifespan of an individual. These
parameters are estimated by birth cohort, and presented in Figure_5. Overdiagnosis
can be variously defined as a fraction of all detected cancers (the solid curve in the left
panel of Figure_5), or as a fraction merely of screen-detected cancers (the dashed
curve).

Recall that the horizontal axis represents the year of a man's fiftieth birthday, so that
older men are represented toward the left of each panel in Figure_5 and younger men
toward the right. In younger cohorts, more of the cohort life span falls in the PSA era.
This leads to a pattern of increasing lead time and increasing overdiagnosis among all
detected cancer patients as we move toward the right in each panel (solid curves). For
men entering the age risk zone for prostate cancer at the present time, the model
predicts about a six-year mean lead time and 25% overdiagnosis among all detected
patients.

Overdiagnosis in screen-detected cases is represented by the dashed curve in the left
panel. This must always be higher than the solid curve, because screen-detected cases
are a proper subset of all cancer cases and thus there is a smaller denominator in
computing the fraction. But in addition to being higher than the solid curve, the dashed
curve reveals a trend in the opposite direction. This can be understood as follows. Men
whose fiftieth birthday occurs in the 1950s were already very old in the PSA era. A
prostate cancer detected by screening in a man of this age has a high probability of
being overdiagnosed, because of his very small expected residual lifetime. In men who
are younger during the PSA era, on the other hand, the pool of screen-detected cases
include includes many cancers that would have surfaced clinically in the man's
residual lifetime if the man had not received a PSA test. These relevant cancers reduce
the proportion of overdiagnosed cancers in younger men. Overdiagnosis in screen-
detected cases settles at about 30% for men who reach their fiftieth birthday during the
PSA era.
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DEFINE OVERDIAGNOSIS
Overdiagnosis. A large proportion of prostate cancers identified through screening
would never be detected in the absence of screening. This phenomenon is called
overdiagnosis. Screening brings such cancers to the surface predominantly in the
localized stage of the disease, leading to an apparent "favorable" stage shift.
Overdiagnosis has multiple consequences. It leads to over-treatment of men who
would never be detected without screening. Also, it modifies apparent estimates of
post-treatment survival as over-diagnosed cases appear to be "cured." Injection of
overdiagnosed cases into the pool of all prostate cancer presentations at diagnosis
changes the distribution and the meaning of clinical covariates in men diagnosed with
prostate cancer in the PSA era. Overdiagnosis could lead to apparently improved long-
term survival of patients with localized stage of the disease even if there were no
mortality benefit.
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MEAN POSTERIOR DELAY TIME
MARGINAL INCIDENCE MODEL

Figure_8 shows an estimate of delay time computed from SEER data (Analysis Of Population
Data). Introduction of PSA testing is associated with earlier detection, and the older the man the
more so. The slight decrease in delay time in the no-PSA prediction is a transient process
resulting from freezing the pre-PSA trend estimates in the year 1988.

For more information on the model from which this estimate was obtained, see
Incidence Model.
For more information on delay time and its integration into the model, see
Delay_Time_Approach.
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WITHIN STAGE SHIFT BY DELAY
TIME

Figure_9 shows that the delay-time approach, developed in the current project,
captures within-stage-and-grade shift. It should be stressed that delay time was
computed without using survival data, and represents an independent significant
prognostic factor for post-treatment survival, particularly in the localized-regional.
These results can be compared with Figure_2, where a similar effect is expressed by
year of diagnosis. For estimates of delay time as a function of age and calendar year,
see Mean Posterior Delay Time Marginal Incidence Model. For more information on
the model from which these estimates were obtained, see Delay_Time_Approach.
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RESULTS AGE ADJUSTED
INCIDENCE MORTALITY

In Figure_6, model predictions are displayed for age-adjusted incidence and mortality,
along with their empirical estimates. To generate predictions in the counterfactual case
of no PSA testing, all trend functions were frozen at a constant in the year 1988, and
PSA sensitivity was set at zero. The mortality figure (right) indicates that the
introduction of the PSA test has led to a decline in mortality.

For a description of the data analysis that yielded these results, see Analysis Of
Population Data.

For a deeper understanding of the model components on which the results are based,
see Incidence Model and Mortality Model.
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ANALYSIS OF POPULATION DATA

ANALYSIS OF POPULATION DATA
The SEER database was used to obtain data on more than 350,000 cases of prostate
cancer diagnosed in nine areas of the United States (San Francisco-Oakland,
Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, Atlanta) as well as
population count files corresponding to those cases. We use the modeling box
corresponding to age interval [50,85] and calendar year interval [1973-2000]. Age
distribution in the U.S. population in year 2000 for men over 50 is used as a standard
when age-adjusted characteristics are reported. Risk of death from other causes (used
in estimates of lead-time and overdiagnosis) was derived from the Human Mortality

Database1.

As shown in Figure_1, incidence of prostate cancer before the introduction of PSA

showed an increasing trend in calendar time reportedly related to TURPs2. In order to
model this effect, a linear trend was specified for the sojourn time model (Equation
LCDX) for the period 1973-1987, saturating in 1988. The parameter specifies the slope
of the trend during 1973-1987. We did not have a compelling evidence for changes in
the onset time distribution over time, and was removed from the model. Also, we
did not find any improvement in the fit from introducing a correlation between age at
onset and the sojourn time, and this term was removed from the model. PSA
sensitivity was specified as an increasing function of the time since tumor onset. When
fitting the model, the estimate settled at 100% sensitivity. Likelihood was maximized
by the Powell's method (Himmelblau1972) of conjugate directions. Confidence
intervals for the model parameters are based on Likelihood Ratio and inverting the
profile likelihood surface for each parameter. Estimates of key model parameters and
the corresponding confidence intervals are shown in Table_1.

Note that the estimated mean age at tumor onset goes well beyond the normal human
lifetime. This is a consequence of the fact that only a proportion of men would ever
develop prostate cancer in their life span. Shown in Figure_4 is a histogram empirical
estimate of prostate cancer incidence and its model--predicted
counterpart by age and calendar year.

The model captures the basic pattern of prostate cancer incidence. The spike effect in
the incidence occurring with the introduction of PSA gets more pronounced with age
except for very old people. This is a consequence of latent prevalence of the disease
accumulating with age. Shown in Figure_5 is an estimate of lead time and
overdiagnosis. Both notions relate to the potential natural history of the disease and
population screening exposure over the life span of an individual. Therefore we
represent them by birth cohort. Overdiagnosis can be measured as a fraction relative to
all detected cancers or to screen-detected cancers only. As we move the year of birth to
the right, more and more of the cohort life span falls on the PSA era. This leads to an
increasing pattern of lead time and overdiagnosis among all detected cancer patients
(solid curves). For men entering the age risk zone for prostate cancer at the present

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

University of Michigan
Analysis Of Population Data

Page 50 of 85 All material © Copyright 2003-2008 CISNET



time, the model predicts about 6-year mean lead time and 25% overdiagnosis among
all detected patients. Interestingly, overdiagnosis in screen-detected cases is a
decreasing function of the birth year and settles at about 30% for the present era.
Initially for a person born in the fifties only older ages are affected by PSA utilization.
If detected at such an age, the case is very likely to be overdiagnosed. Indeed, if
screening were ignored the disease would have little chance to surface because of the
very small expected residual lifetime in older people. This is why the dashed curve in
Figure_5 (left) starts high. As we move the potential life history more and more under
the PSA exposure, the pool of screen-detected cases gets enriched with relevant cancers
that have advanced diagnosis due to PSA yet would surface clinically in their potential
residual lifetime if PSA were not applied. Since screen-detected cases represent a
subset of all cancer cases, overdiagnosis relative to screen-detected cases (the dashed
curve) is always higher than the one relative to all cancer cases (the solid curve).
Shown in Figure_6 are model predictions for age-adjusted incidence and mortality and
their empirical estimates. To generate predictions without PSA, all trend functions
were frozen at a constant in year 1988, and PSA sensitivity was set at zero. The
mortality figure (right) indicates that introduction of PSA test has led to mortality
decline. Explaining this effect and its partitioning into fractions attributable to early
detection and treatment is one of the emphases of this project.

The model was implemented in a prototype software package for Windows that brings
incidence, survival, mortality and other model blocks into a common GUI shell that
uses unified data input, output, menu and graphics structure. Shown in Figure_7 are
screen shots of the software.

REFERENCES:
1 Wilmoth, John R. (Director), Shkolnikov, Vladimir Shkolnikov (Co-Director),

“Human Mortality Database (HMD).” 2003;
2 Merrill, R.M., Feuer, E. J., Warren, J. L. , Schussler, N. , Stephensons, R. A. “Role of

transurethral resection of the prostate in population-based prostate cancer
incidence rates” in American Journal of Epidemiology 1999; 150: 8: 848-860
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TABLE_1
Parameter Legend Point Estimate 95% CI

Mean baseline sojourn time 18.558 (18.345, 18.775)
Shape sojourn time 1.541 (1.5191, 1.5644)
Slope of trend for sojourn time 0.09354 (0.09068, 0.09641)
Mean age past 50 at tumor onset 72.732 (72.498, 72.965)
Shape of age past 50 at tumor onset 1.6153 (1.6067, 1.6239)

Table_1. Estimates of model parameters and confidence intervals. Time and age are measured in
years.
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MODELING CANCER DETECTION
THROUGH SCREENING
MODELING CANCER DETECTION THROUGH SCREENING
Let be the survival function of the potential time to screen-based diagnosis
(SDx). This section is devoted to modeling this distribution.

For an arbitrary individual from the target population, consider the "risk" of getting his
first screen. Age at first screen may be regarded as a survival time with the
instantaneous risk represented by the hazard function that depends on age and
calendar year. An empirical histogram estimate for can be obtained by
dividing the number of subjects at the age of receiving their first screen in year by
the total number of person-years with no evidence of the disease in the cell. Of

course, this estimate is inconsistent unless the data are grouped1.

The probability of no screens by the age of , , is a survival function obtained by

integrating the hazard over a life line on the so-called Lexis diagram2:

Denote by the intensity of screening in subjects who have already had their
first screen. The fact that the subject has had his first PSA test may identify him as a
member of the group that enjoys a higher screening utilization for various reasons.
Therefore, is larger than , as we see in Figure_3.

Consider the unconditional probability that a subject is not diagnosed
by screening in the age interval , . Under the assumptions stated in our
Assumptions section, we have

where for any . The conditional probability of no screening diagnosis by the
age of , , takes the form

The first term in this equation addresses the possibility of no screens by the age of
. The second term addresses the situation when the first screen occurs before onset of
the disease at the age of and no diagnosis is achieved through secondary screens that
might happen in the age interval . The third term accumulates the probability
that cancer is missed at the first and secondary screens occurring after disease onset.
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OVER DIAGNOSIS
A large proportion of prostate cancers identified through screening would never be
detected in the absence of screening. This phenomenon is called overdiagnosis.
Screening brings such cancers to the surface predominantly in the localized stage of the
disease, leading to an apparent "favorable" stage shift. Overdiagnosis has multiple
consequences. It leads to over-treatment of men who would never be detected without
screening. Also, it modifies apparent estimates of post-treatment survival as over-
diagnosed cases appear to be "cured." Injection of overdiagnosed cases into the pool of
all prostate cancer presentations at diagnosis changes the distribution and the meaning
of clinical covariates in men diagnosed with prostate cancer in the PSA era.
Overdiagnosis would lead to apparently improved long-term survival of patients with
localized stage of the disease even if there were no mortality benefit.
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LENGTH BIAS
It has long been recognized that screening preferentially detects slower growing

tumors1. Slower growing tumors are likely to be associated with better prognosis.
Among other consequences, length-bias effect would lead to apparently worsened
survival of patients in distant stage under screening as compared to the unscreened
population. Indeed, the pool of advanced tumors detected in the unscreened
population is heterogeneous in terms of growth rates. With the introduction of
screening some of the would-be distant cases will be detected earlier in a localized
stage. These are likely to be the "best" slower growing fraction of the would-be distant
cases. As a result, cases missed by screening that are still detected with distant disease
under screening, show worse prognosis as compared to the unscreened population.

REFERENCES:
1 Zelen, M., Feinleib, M. “On the theory of screening for chronic diseases” in

Biometrika 1969; 56: : 601-614
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LEAD TIME
Lead-time measures an advance in the diagnosis of prostate cancer due to screening. It
adds to the observed survival time even if early detection and treatment were of no
benefit. The lead-time effect pertains to patients who would still be detected later
without screening. Lead-time would lead to apparently improved short-term survival
even if there were no mortality benefit.
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FIGURE_2

Figure_2. Within-stage shift. Prostate cancer specific survival by year of diagnosis and stage.
The trend reflects improvement of prognosis in localized disease and worsening of prognosis
in distant disease with dissemination of screening. Lead-time, length-bias and overdiagnosis
provide part of the explanation for the within-stage shift. Data from the Surveillance,
Epidemiology and End Results (SEER) database, National Cancer Institute.
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DELAY_TIME_APPROACH

LINKING INCIDENCE AND SURVIVAL: THE DELAY TIME APPROACH
on the level of the subject, age at cancer diagnosis and survival post-diagnosis as well
as cancer-specific lifetime are confounded by screening schedules. this confounding is
expressed through lead-time, length bias and stage- and within-stage shift (see
Modeling Cancer Detection Through Screening). As a consequence, as we discussed
earlier, subjects with different screening schedules will have different distributions of
age at diagnosis, and, clinical covariates being equal, they will still show different
survival (within-stage shift). We have shown preliminary evidence that within-stage
shift is a very significant effect in prostate cancer (Figure_2). The within-stage shift
effect is a consequence of heretogeneity in the latent natural history of the disease and
its strong effect on cancer detection processes. As a result, conditioning on different
screening histories, other things equal, selects different subsets of natural histories of
the disease. It then comes at no surprise that different natural histories are associated
with different prognosis. In population data, person-level screening schedules are
typically unavailable. Latent heterogeneity in the population data is much higher due
to the contribution of uncertainty in screening schedules. In our population model,
discussed in the Model Description above, the effect of screening on survival was
modeled through the observed stage-shift and the within-stage shift adjusted for
empirically through the categorized year of diagnosis variable. This allowed us to
make mortality prediction within the observed period of 1973-2000, including a no-
PSA predictive run performed by freezing all trend functions in 1988 and removing
PSA from the incidence model. In this project we plan to improve the predictive
potential of the model by linking population characteristics of interventions such as
utilization of PSA, TURPs, Treatment, etc., to survival through natural history
surrogates without using empirical variables such as year of diagnosis. This would
make predictions a function of utilization characteristics and enable long-term
predictions, optimization of interventions, unbiased assessment of treatment effects
from population data, and many other model applications discussed below.

Our approach to linking incidence and survival using population data will be based on
the concept of frailty. Conditional on the information available at diagnosis

1. Age at diagnosis, , year of diagnosis, ,

2. Clinical covariates observed at diagnosis, ;

3. Dissemination of interventions over calendar time (rates of PSA testing, TURPs),
,

we will derive the posterior distribution of the age at tumor onset . With the marginal
incidence model discussed in Incidence Model (we continue using the notation
introduced in this section), we have

where is the year of birth.

Delay time is the time interval from tumor onset to diagnosis, . We will use
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as a surrogate of the natural history of the disease as far as its effect on survival is
concerned. A frailty model will be formulated for survival with as a frailty variable.
The effect of early detection due to surveillance is expressed as decreasing . As a
result, the survival function post-diagnosis will be a functional of the distribution of .

In our first approach we will summarize the effect of on survival by using the
posterior mean delay time as a covariate for survival. Using a specific complete data
model for survival, given , say, a proportional hazards frailty model, may lead to
model misspecification. However, if we keep the form of the incomplete data
semiparametric survival model flexible, a model building procedure based on the data
will absorb such misspecification. This approach is more attractive than traditional
frailty modeling, since the choice of a complete data model is difficult to justify
anyway, because complete data are not available. Survival methodology developed in
our previous project (Survival Component) specifically addresses flexible model
building procedures and guarantees that inference procedures will be available for all
models constructed by these procedures.

Figure_8 shows mean posterior delay time (DT) (Equation Post Y) computed using the
marginal incidence model fit to SEER data (Analysis Of Population Data).

From the Figure_8 it is clear that introduction of PSA is associated with earlier
detection, and the older the person the more so. The slight decrease of DT in the no-
PSA prediction is a transient process resulting from freezing the pre-PSA trend
estimates in year 1988. Figure_9 shows that the DT approach captures the within--
stage--and--grade shift. It should be stressed that DT was computed without using
survival data and represents an independent significant prognostic factor for post-
treatment survival, particularly in localized/regional stage (compare with Figure_2
where a similar effect is expressed by year of diagnosis).

We will proceed as follows.

1. Identify a regression model of stage and grade ( ) at diagnosis
conditional on independent variables represented by year of birth , age at
tumor onset , and delay time . This is a regression model for ordered
categorical response. We will consider Proportional Odds and Continuation
Ratio models. If necessary, custom models will be developed specifically to
address this problem if the modelled effect proves to be non-standard. The PI
has experience developing models for ordered categorical data and an efficient

algorithm for statistical inference with general ordinal models1.

2. Using the marginal incidence model Incidence Model, obtain the joint
distribution of age and clinical covariates at diagnosis

. This will contribute to the refined stage- and
grade--specific incidence model block that does not use year of diagnosis as a
surrogate variable to model stage and grade shift. This block for is
obtained by integrating out .

3. Using the joint distribution , develop a model block for predicting
posterior mean age at tumor onset by extending (Equation Post Y) to include

University of Michigan
Delay_Time_Approach

Linking incidence and survival: the delay
time approach

Page 61 of 85 All material © Copyright 2003-2008 CISNET



information on stage and grade at diagnosis. This will improve prediction of DT
and the proportion of explained variation in post-treatment survival attributable
to the within stage shift.

4. Develop the procedure that will adjust survival time for known screening
utilization patterns.

Given a population sample of prostate cancer survival, the procedure will be organized
as follows.

1. With the stage- and grade--specific prostate cancer incidence model, obtain the
mean posterior DT for each subject in the survival sample.

2. Determine an adequate semiparametric model for survival data with covariates
represented by , and mean posterior DT. This would require a trial
and error loop through model building using composition techniques (Model
Building By Composition), fitting using the Quasi-EM algorithm (Estimation
Algorithm) and hypotheses testing using the profile information matrix (Profile
Information Matrix).

The significance of our DT approach is that it adjusts survival model for a complex
``early detection" confounder. In clinical trials, ignoring significant confounders leads
to underestimated treatment effects. With population data, straightforward estimation
of the treatment effect is biased since screening utilization is uncontrolled for, and
study design is retrospective without randomization. In this project the DT approach
serves two main purposes

1. An unbiased assessment of treatment effects with population (and generally
retrospective, nonrandomized) data (Aim Develop Unbiased Assessment Of
Treatment Effects).

2. Enables a model that can predict cancer mortality under arbitrary scenarios of
utilization of screening and treatment. This paves the way to partitioning
mortality into attributable fractions (Aim Study The Joint Effect Of Progress)
short- and long-term predictions of mortality trends (Aim Make Short And Long
Term Predictions), predicting the effects of cancer control strategies that have
never been used before, optimization of screening schedules (Aim Determine
Evaluate Optimal Screening Strategies), and addressing other specific aims of
this project.

We recognize that mean DT may not provide all of the necessary reduction in the
unexplained variation of survival. This will be evaluated by preserving year of
diagnosis variable in the model jointly with DT and assessing whether it is still
significant. If it turns out that the use of year of diagnosis for explanation of the within
stage shift is still necessary, we will extend the DT approach to include the variance of
the posterior delay time in addition to the mean and will develop an adjustment of
survival using both parameters (mean and variance). Also, as a better but more
computer intensive alternative, we will consider using a frailty model approach where
posterior distribution for the delay time is used for the frailty variable. The frailty
would then represent the uncertainty in the tumor onset given information available at
diagnosis in a functional way rather than by one or two surrogate parameters. If
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necessary, year of diagnosis trend in addition to the DT-adjustment will be preserved
to cover yet unexplained variation of survival.

REFERENCES:
1 Tsodikov, Alexander “A Proportional Hazards Model Taking Account of Long-Term

Survivors” in Biometrics 1998; 54: 4: 1508-1516
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FIGURE_3B

Figure_3b. Risks of first and secondary PSA tests as estimated from the simulation
model by age and calendar year. Left: Proportion of never screened men at risk getting their
first PSA test. Right: Proportion of men screened at least once getting a secondary PSA test.

REFERENCES:
1 Tsodikov, A., Szabo, A., Wegelin, J. “A population model of prostate cancer

incidence” in Statistics in Medicine 2006; 25: 16: 2846-2866
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MODELING CANCER DETECTION
THROUGH SCREENING-B

Modelling cancer detection through screening

This section (from1) is devoted to modeling the distribution of potential time to screen-
based detection conditional on the year of birth and age at tumor onset .
It is a somewhat more detailed version of Modeling Cancer Detection Through
Screening.

For an arbitrary individual from the target population, consider the "risk" of getting the
first screen in his life. Age at first screen may be regarded as a survival time with the
instantaneous risk represented by the hazard function . Naturally, depends
on age of the person and the current calendar year . Generally, it is expected that

increases in starting with the year of PSA introduction. As a function of , it is
reasonable to expect that is increasing initially while the residual life
expectancy is still substantial and then decreasing for very old people. An empirical
histogram estimate for can be obtained by dividing the number of subjects at
the age of receiving their first screen in year by the total number of subjects with no
evidence of the disease in the cell. More precisely, we should count tests in the
interval and divide by , which results in the same estimate for the grouping

interval year. Note that this estimate is inconsistent unless the data are grouped2.

The evolution of an -birth cohort up to the age of can be represented as a line
connecting points , where , on the age by year plane called the Lexis

diagram3. The probability of no screens by the age of , , is a survival function
obtained by intergrating (accumulating) the hazard over the line

Denote by the intensity of screening in subjects who already had their first
screen. Generally, we expect to be larger than . Indeed, the fact that the subject
has had his first PSA test may identify him as a member of the group that is screened
more frequently for reasons such as easier access to secondary testing having done this
once already, favorable attitude towards screening in those who choose to have their
first test, doctor's recommendations for serial secondary screens following the first one,
etc.
The model for risk of diagnosis by cancer screening is based on the following
assumptions.

• The probability that a subject born in year who has never been screened by the
age of receives his first screen in the age interval is

.

• The probability that a subject born in year who has been screened at least once
by the age of receives a screen in the age interval is

. This assumption defines secondary screens as following a
non-homogeneous Poisson process in age with intensity .
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• The probability that a subject born in year , with the disease onset at the age of ,
screened at the age of is detected with cancer is

where is the sensitivity of screening, and is the age of tumor at the time of
testing. It is natural to specify as an increasing function.

It should be noted that the fact that violates the notion that the entire
screening schedule for a subject could be a realization of a non-homogeneous Poisson
process.

Consider the probability that a subject born in year , with onset of the
disease at the age of who has had his first screen by the age of is not diagnosed by
screening in the age interval , . Note that this is a probability of no event in
the interval for a non-homogeneous Poisson process in with intensity

thinned with probability . (We use
the notation for any .) The intensity of a Poisson process with intensity
thinned with probability is given by the product , so that with ,

If the interval in question is before onset, , then there is no diagnosis and
. If and , the time interval in where diagnosis is

possible starts at , so that is given by an expression similar to
(\ref{g2dxc}) with the lower limit in the integral set at . Summarizing, we have

where for any .
We are now equipped to derive the probability of no screening diagnosis by the age of

, conditional on year of birth and age at disease onset , where is time since
onset. We have

The first term in the above equation addresses the possibility of no screens by the age
of . The second term addresses the situation when the 1st screen occurs before
onset of the disease at the age of and no diagnosis is achieved through secondary
screens that might happen in the age interval . The third term accumulates the
probability that cancer is missed at the first and secondary screens occurring after
disease onset.
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EQUATION QEM
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FIGURE FIRST PSATEST
SECONDARY PSATEST

Risks (rate per person) of first and secondary PSA tests as estimated from the NIH
simulation model by age and calendar year. This simulator is based on data from the National
Health Interview Survey (NHIS) and Surveillance, Epidemiology and End Results (SEER) -
Medicare linked database (Seer_Medicare). Left: Proportion of never screened men at risk of
getting their first PSA test. Right: Proportion of men screened at least once getting a secondary
PSA test. Original simulated data were smoothed by a generalized additive model with a logit
link.

For more information see PSAscreening Model.
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FIGURE_5

Figure_5. Overdiagnosis (left) and lead-time (right) by birth cohort. Dashed line is the fraction
of overdiagnosis in screen-detected patients. Solid line (left) is the fraction of overdiagnosis in
all cancer patients.
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FIGURE_8

Figure_8. Mean posterior delay time by age and year of diagnosis with (A) and without (B)
PSA screening. Estimates from SEER data.
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FIGURE_9

Figure_9. Survival by mean posterior delay time (DT), stage (Localized/Regional, Distant) and
Grade (Well or Moderately (WM), Poorly or Undifferentiated (PU)). Estimates were obtained
from SEER data.
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FIGURE_6

Figure_6. Age-adjusted estimates of incidence (left) and mortality (right) in the presence of
PSA (red) and prediction of the no-PSA case (blue). Rates are given per person. Thick green
curves correspond to empirical estimates. Model-based predictions show overall mortality
while empirical estimate is for incidence-based mortality only for cases diagnosed between
1973 and 2000. The discrepancy in the mortality figure for years close to 1973 shows the effect
of prostate cancer cases prevalent in 1973.
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EQUATION LCDX
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FIGURE_4

Figure_4. Prostate cancer incidence (rate per person). Observed (left): Empirical estimate of
prostate cancer incidence computed by dividing incident cancer cases from the SEER database
by the population, for each age and calendar year. Expected (right): Model-predicted prostate
cancer incidence by age and calendar year.
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FIGURE_7

Figure_7. Screen shots of the prototype software package implementing the model.
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EQUATION POST Y

where is the year of birth.
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AIM DEVELOP UNBIASED
ASSESSMENT OF TREATMENT
EFFECTS

To develop unbiased assessment of treatment effects from population data.
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AIM STUDY THE JOINT EFFECT OF
PROGRESS

To study the joint effect of progress in treatment of prostate cancer and PSA utilization
on observed national incidence and mortality trends.
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AIM MAKE SHORT AND LONG
TERM PREDICTIONS

To make short- and long-term predictions of the trends in national incidence and
mortality under various scenarios of projected behavior of key determinants of
population processes.
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AIM DETERMINE EVALUATE
OPTIMAL SCREENING STRATEGIES

To determine and evaluate optimal screening strategies and predict their effect on
future national trends in prostate cancer incidence and mortality.
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NHIS
REFERENCE
National Center for Health Statistics (2004), "National Health Interview
Survey (NHIS)."

URL:
http://www.cdc.gov/nchs/nhis.htm
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